

CureVac Revolutionizing mRNA for Life

Investor Presentation, November 2023

Forward-Looking Statements

The information set forth herein does not purport to be complete or to contain all of the information you may desire. Statements contained herein are made as of the date of this document unless stated otherwise, and neither the delivery of this document at any time, nor any sale of securities, shall under any circumstances create an implication that the information contained herein is correct as of any time after such date or that information will be updated or revised to reflect information that subsequently becomes available or changes occurring after the date hereof.

This presentation of CureVac N.V. (the "company") contains statements that constitute "forward-looking statements" as that term is defined in the United States Private Securities Litigation Reform Act of 1995, including statements that express the company's opinions, expectations, beliefs, plans, objectives, assumptions or projections of the company regarding future events or future results, in contrast with statements that reflect historical facts. Examples include discussion of the potential efficacy of the company's vaccine and treatment candidates and the company's strategies, financing plans, growth opportunities and market growth. In some cases, you can identify such forward-looking statements by terminology such as "anticipate," "intend," "believe," "estimate," "plan," "seek," "project," or "expect," "may," "will," "would," "could," "potential," "intend," or "should," the negative of these terms or similar expressions. Forward-looking statements are based on management's current beliefs and assumptions and on information currently available to the company. However, these forward-looking statements are not a quarantee of the company's performance, and you should not place undue reliance on such statements.

Forward-looking statements are subject to many risks, uncertainties and other variable circumstances, including negative worldwide economic conditions and ongoing instability and volatility in the worldwide financial markets, ability to obtain funding, ability to conduct current and future preclinical studies and clinical trials, the timing, expense and uncertainty of regulatory approval, reliance on third parties and collaboration partners, ability to commercialize products, ability to manufacture any products, possible changes in current and proposed legislation, regulations and governmental policies, pressures from increasing competition and consolidation in the company's industry, the effects of the COVID-19 pandemic on the company's business and results of operations, ability to manage growth, reliance on key personnel, reliance on intellectual property protection, ability to provide for patient safety, and fluctuations of operating results due to the effect of exchange rates or other factors. Such risks and uncertainties may cause the statements to be inaccurate and readers are cautioned not to place undue reliance on such statements. Many of these risks are outside of the company's control and could cause its actual results to differ materially from those it thought would occur. The forward-looking statements included in this presentation are made only as of the date hereof. The company does not undertake, and specifically declines, any obligation to update any such statements or to publicly announce the results of any revisions to any such statements to reflect future events or developments, except as required by law.

For further information, please reference the company's reports and documents filed with the U.S. Securities and Exchange Commission (SEC). You may get these documents by visiting EDGAR on the SEC website at www.sec.gov.

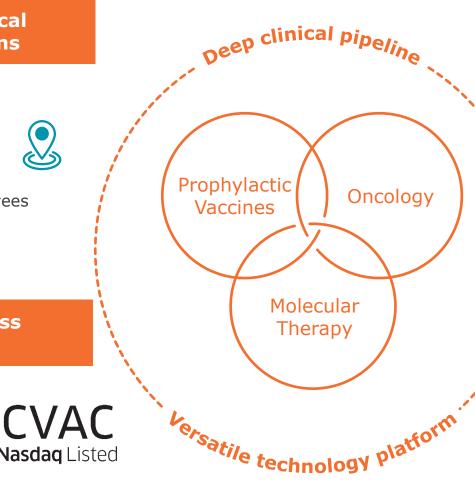
CureVac at a Glance

Pioneers in medical mRNA applications

Founded in 2000

Headquartered in **Tübingen**

Financing business transformation


€464.1 million

Cash position*

Nasdaq Listed **Nasdaq Biotech Index**

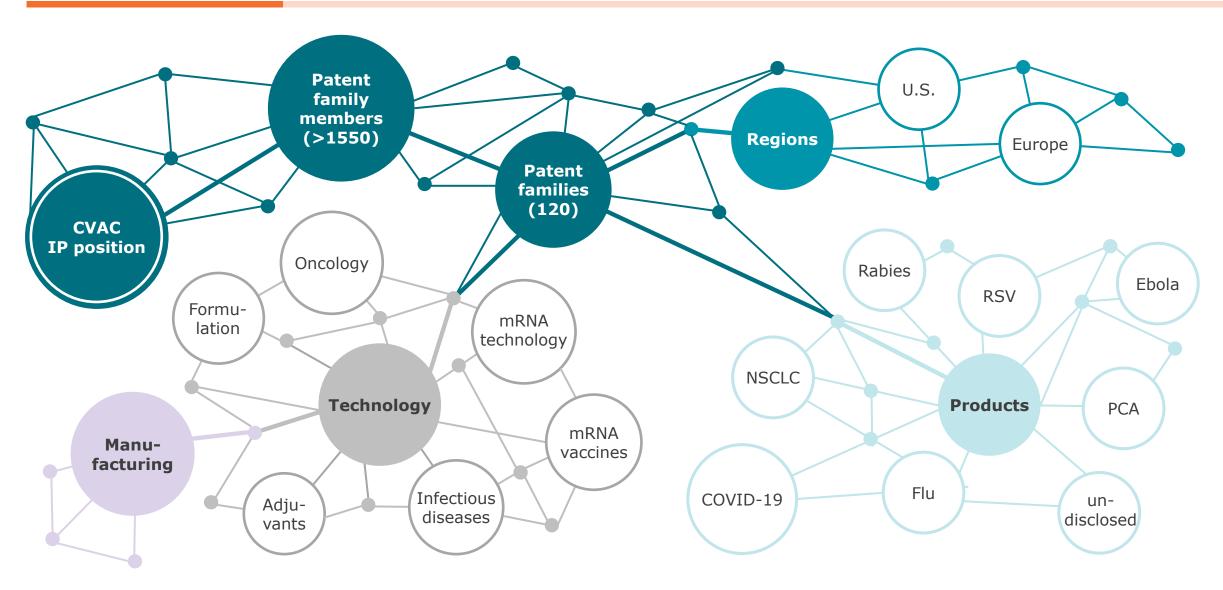
(since Dec 2021)

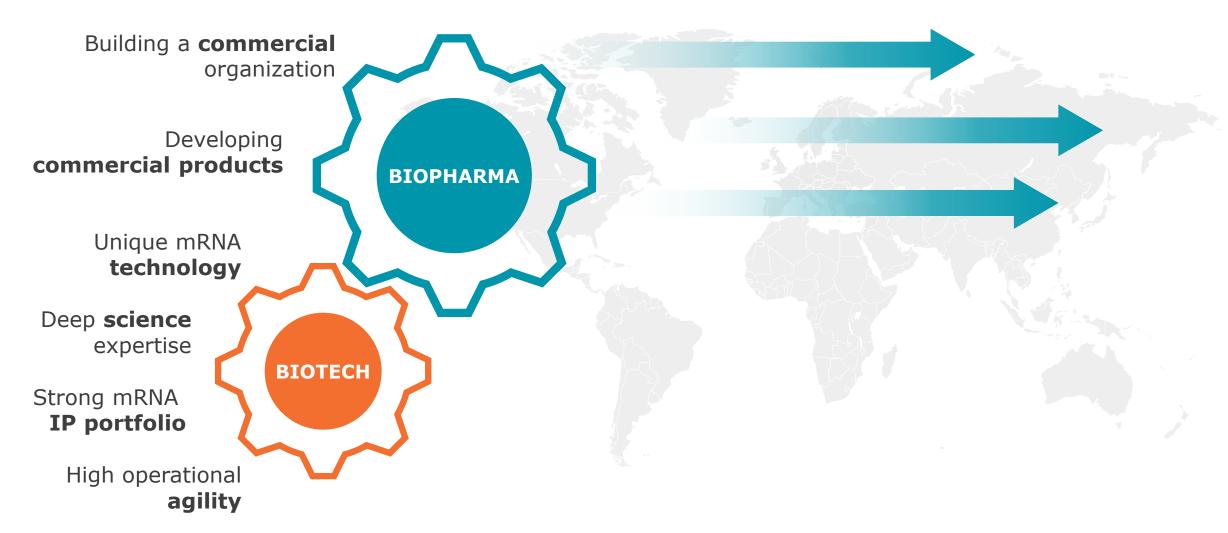
Manufacturing expertise

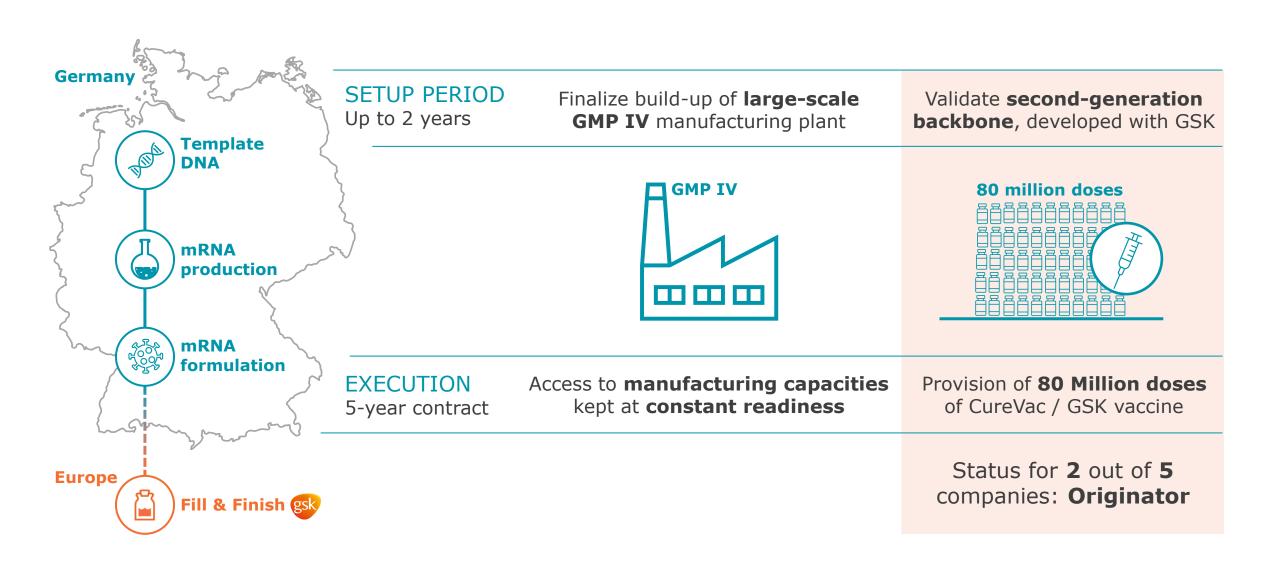
certified suites **3 GMP**

Strategic partnerships

- Operational expertise
- Development support
- Commercial execution power

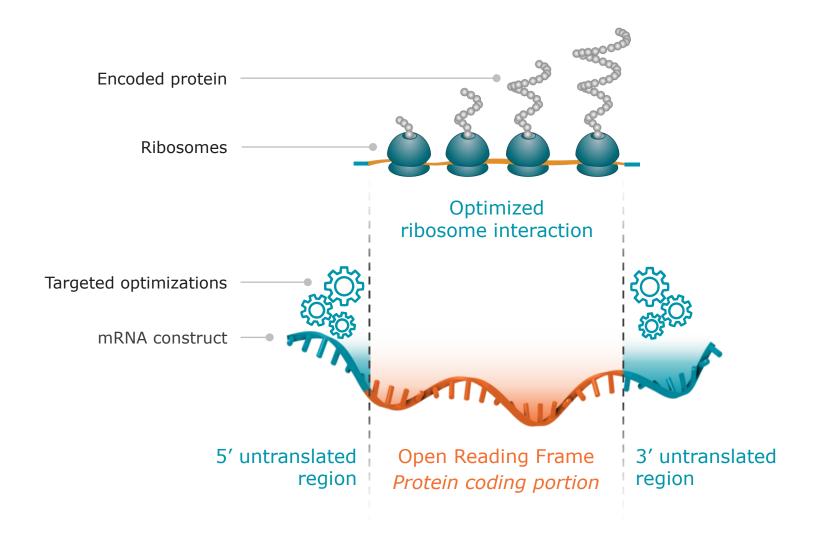



One of the Largest and Most Diverse mRNA Patent Portfolios with >1,000 issued Patents


Corporate Transformation: Propelling CureVac Forward

Pandemic Preparedness Contract with German Government until 2029

CureVac Pipeline: A Diversified Portfolio



AREA	PROGRAM			CANDIDATE		PRECLINICAL	PHASE 1	PHASE 2	Р
PROPHYLACTIC VACCINES	2 nd -Generation	COVID-19	GSK	CV0601 / CV0701	(modified mRNA)				
		Influenza	COK	Multivalent construct	(modified mRNA)				
	2 nd -Generation	Other	GSK	Four undisclosed targets					
	1 st -Generation	Rabies		CV7202					
	Diverse Projects BILL & MELINDA GATES foundation			, Rota, malaria, universal i	nfluenza				
	Surgically resected	d glioblastoma	l	CVGBM	(unmodified mRNA)				
ONCOLOGY	Solid tumors ¹⁾			CV8102					
ONCOLOGI	Neoantigens			Antigen discovery engine based on new technologies acquired with Frame Cancer Therapeutics					
	Tumor Associated Antigens								
MOLECULAR THERAPY	Cas9 gene-editing		CRISPR Trestolectures	CRISPR Therapeutics coll	aboration				
	Liver Diseases			REBIRTH-Research Center collaboration					
	Ocular Diseases			Schepens Eye Research I	Institute collaboration				
	Therapeutic Antibe	odies	Genmab	Genmab collaboration					

Optimizing mRNA for Broad Range of Vaccine Applications

- Optimizing untranslated regions based on **potent**, **tissue-specific** regulatory elements
- Optimizations allow for increased translation efficiency and immunogenicity
- Maximizing ribosome interaction for increased protein expression enables low dose activity

Unique Mechanism of Action for Infectious Diseases and Oncology

MECHANISM OF ACTION

- Inducing strong antibody titers
- Inducing B and T cell responses
- Activating innate immune system
- Inducing boostable memory responses

PROPHYLACTIC VACCINES

- Active at **low dose** in humans
- Enables multivalent vaccines
- Fast, **large-scale** GMP production

CANCER VACCINES & IMMUNO-MODULATION

- Innate and adaptive immune activation
- Key activation of T cell responses
- Demonstrated breaking of tolerance

BROAD INFECTIOUS DISEASES COLLABORATION

JULY 2020

- **Five** defined infectious disease targets
- First disclosed indication: INFLUENZA
- Modified candidate in Phase 2 testing

FINANCIALS

Milestone and royalty payments

COVID-19 COLLABORATION

FEBRUARY 2021

- Broadened technology: modified mRNA
- Advanced formats: mono- and multivalent
- Modified candidates in Phase 2 testing

FINANCIALS

• 50:50 split costs and profit

Advancing Clinical Infectious Disease Development Programs With GSK

Phase 2 Study COVID-19

- CV0701, bivalent candidate encoding the spike protein of BA.4-5 and the original SARS-CoV-2 strain
- Licensed bivalent mRNA comparator vaccine
- Study fully enrolled at 427 participants
- Data expected in early 2024
- Study conducted in Australia

Phase 2 Part Seasonal Flu

- Candidate selected from comprehensive
 Phase 1 part of combined study
- Licensed age-appropriate comparator vaccines
- Candidate encodes antigens matched to all WHO-recommended flu strains
- Data expected in 2024
- **Exp. 960** participants in Phase 2 part
- Study conducted in the U.S., Belgium,
 Canada and South Africa

Advancing Clinical Infectious Disease Development Programs With GSK

Phase 2 Study COVID-19

427 participants aged 18 and older

Bivalent candidate Omicron BA.4-5 and wild type **CV0701** higher dose

CV0701 medium dose

CV0701 lower dose

Licensed bivalent mRNA comparator

Monovalent candidate Omicron BA.4-5

CV0601 medium dose

Phase 2 Part Seasonal Flu

Exp. 480 younger adults aged 18-64

Exp 480 older adults aged 65-85

Candidate dose 1

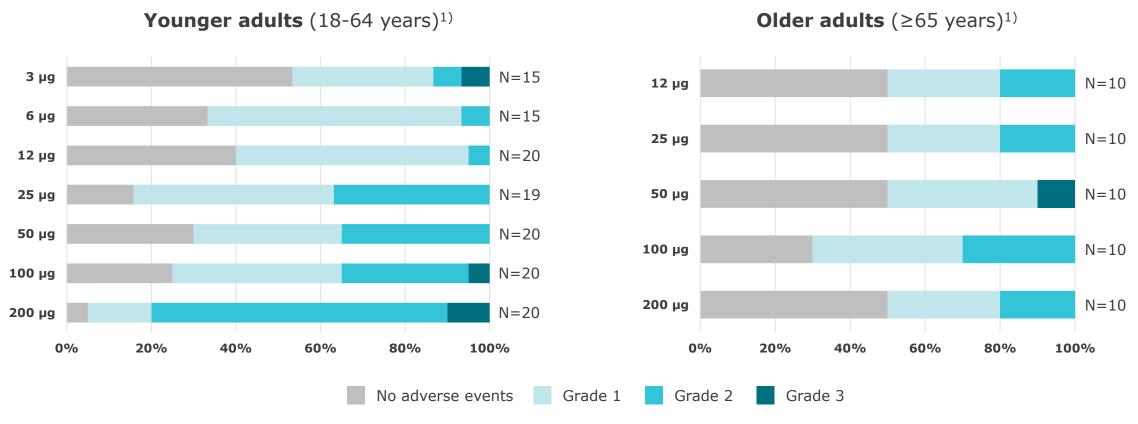
Candidate dose 1

Candidate dose 2

Candidate dose 2

Candidate dose 3

Candidate dose 3

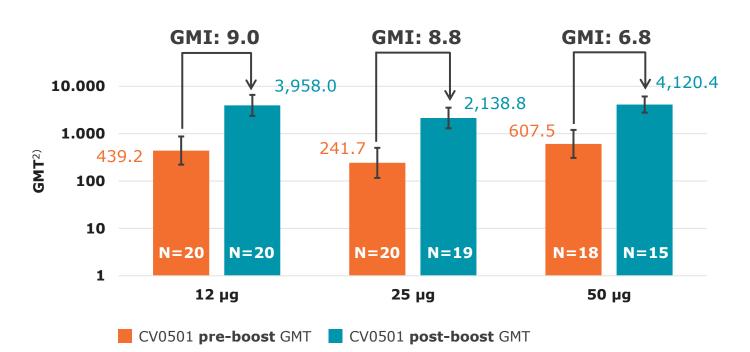

Licensed comparator younger adults

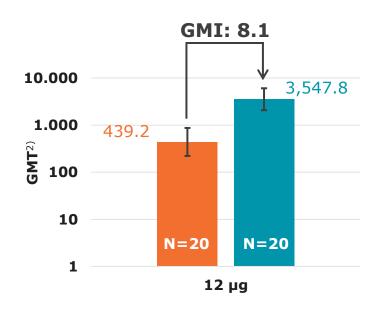
Licensed comparator older adults

COVID-19: Reactogenicity Across Tested Doses and Age Groups

CV0501: COVID-19 construct applying modified mRNA

Modified mRNA technology shows tolerable reactogenicity profile - up to 200µg


COVID-19: CV0501 Immune Responses Against BA.1 in Younger Adults

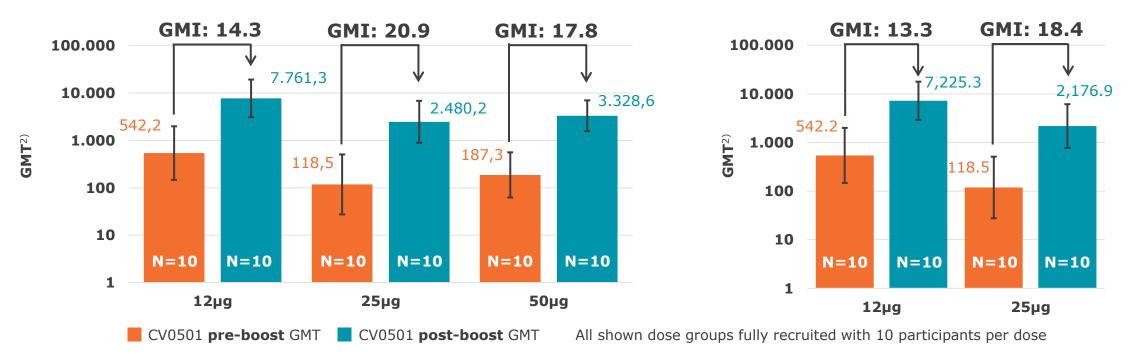


CV0501: BA.1 neutralizing antibodies (GMT) per dose level on days 15 and 29

Day 15: Younger adults (18-64 years)¹⁾

Day 29: Younger adults (18-64 years)¹⁾

CV0501 induces substantial antibody responses in younger adults against BA.1 at low dose levels


COVID-19: CV0501 Immune Responses Against BA.1 in Older Adults

CV0501: BA.1 neutralizing antibodies (GMT) per dose level on days 15 and 29

Day 15: Older adults (\geq 65 years)¹⁾

Day 29: Older adults (≥65 years)¹⁾

CV0501 induces substantial antibody responses in older adults against BA.1 already at low doses

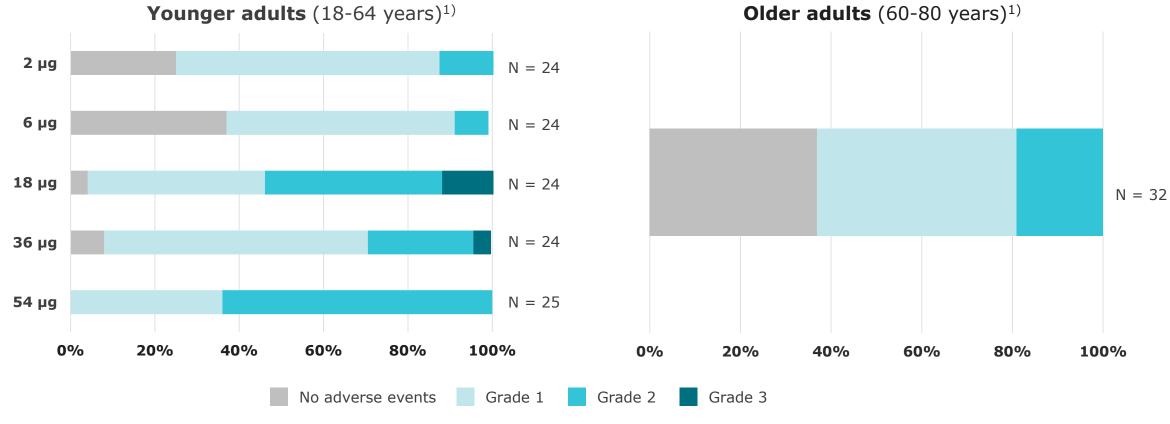
¹⁾ Preliminary data prior to database lock

GMT: Geometric mean titers **GMI**: Geometric mean increase

COVID-19: Extended CV0501 Reactogenicity and Immunogenicity Data

CV0501: Modified mRNA

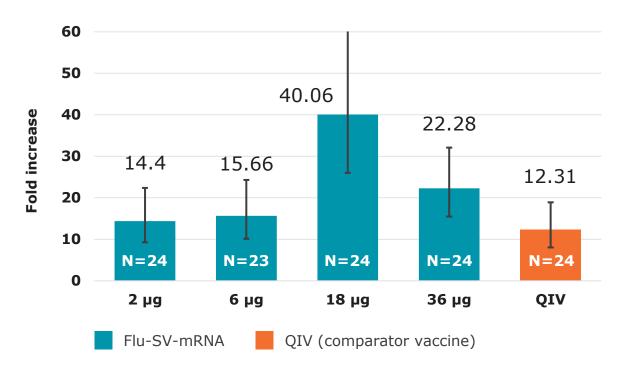
GMI against **BA.1**, both age groups, Day 15 and 29


(Younger adults 18-64, older adults \geq 65)¹)

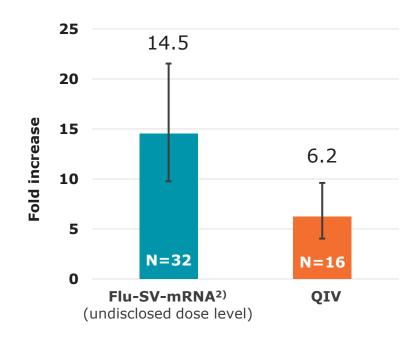
Dose	Day 15 GMI	Day 29 GMI
3 μg (only YA) NEW	4.8 (n=15)	n/a
6 μg (only YA) NEW	4.9 (n=15)	n/a
12 μg	10.5 (n=30)	9.5 (n=30)
25 μg	11.1 (n=29)	10.5 (n=28)
50 μg	12.1 (n=30)	10.6 (n=30)
100 μg NEW	12.4 (n=29)	11.4 (n=26)
200 μg NEW	21.8 (n=26)	14.6 (n=18)

Influenza: Reactogenicity Across Tested Doses and Age Groups

Flu-SV-mRNA: monovalent flu construct applying modified mRNA


Modified mRNA offers broad dose range and a tolerable reactogenicity profile

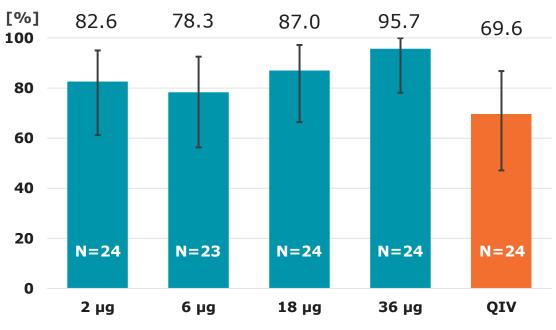
Influenza: Flu-SV-mRNA Boosting Activity



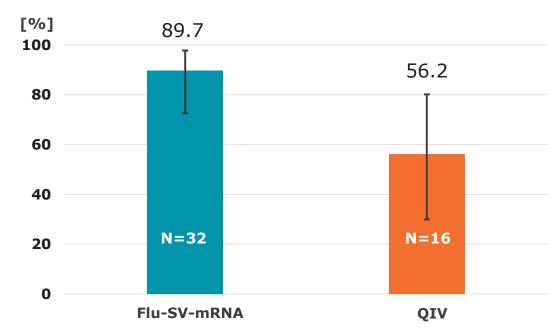
Ratio post- to pre-boost titers:

Ratio of serum **HI** geometric mean titers in **younger adults** (18-45 years)¹⁾

Ratio of serum **HI** geometric mean titers in **older adults** (60-80 years)¹⁾


Antibody increase of Flu-SV-mRNA in line with comparator vaccine already at lowest dose level

Influenza: Flu-SV-mRNA Seroconversion Rates

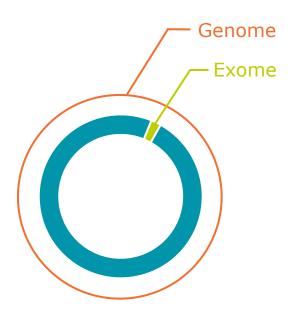


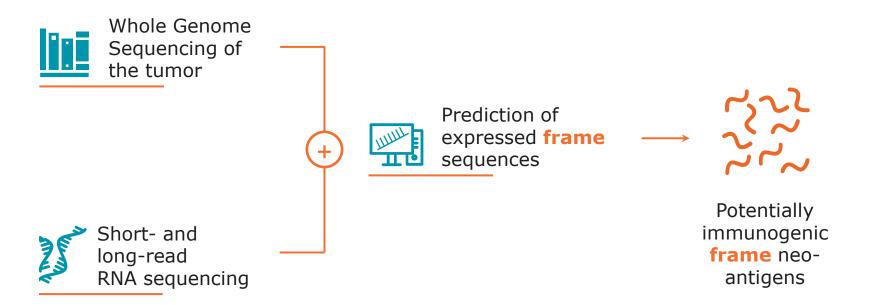
Flu-SV-mRNA: Seroconversion¹⁾ rates

Older adults (60-80 years)²⁾

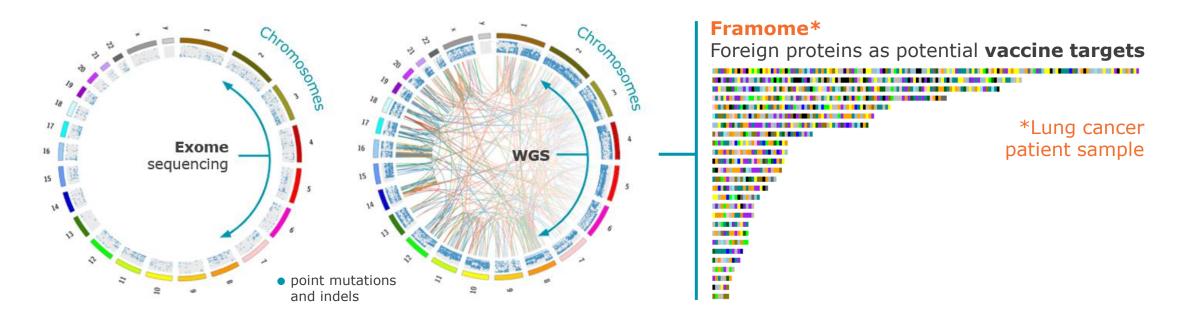
Flu-SV-mRNA QIV (licensed comparator vaccine)

Flu-SV-mRNA in line with licensed comparator vaccine beginning at lowest dose


a) pre-dose HI titer <1:10 and post-dose titer ≥1:40 or


b) pre-dose titer ≥1:10 and post-dose titer at least 4x pre-dose titer

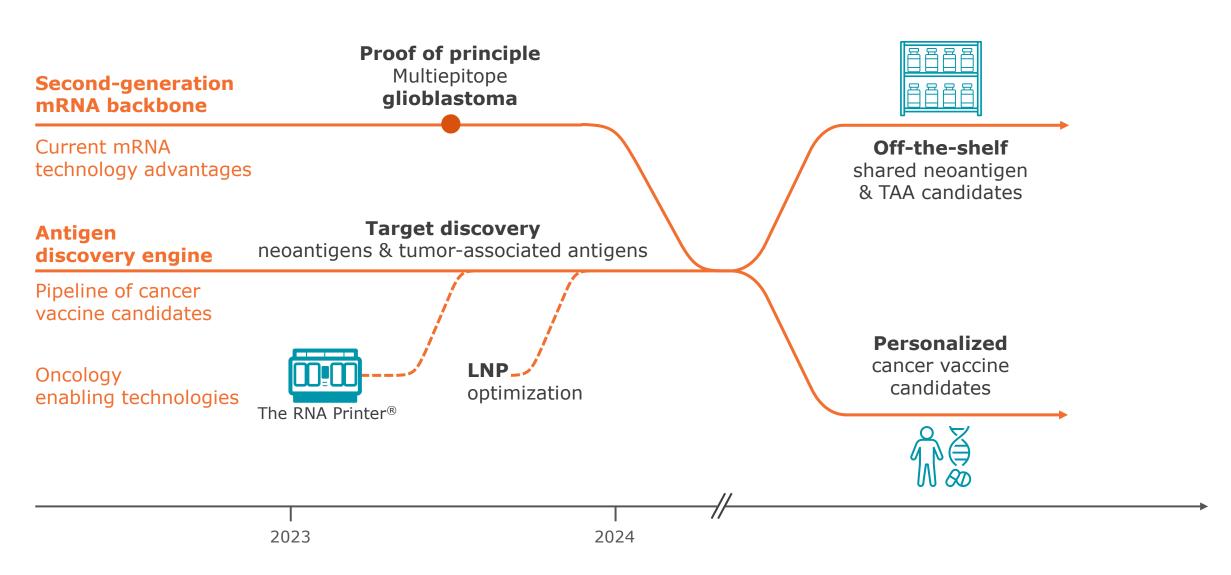
Leveraging Data on the Full Inventory of Genomic Changes


Conventional antigen discovery is restricted to mutations in the **tumor exome**

CureVac leverages the **full tumor genome** and tumor-specific **expression analysis**

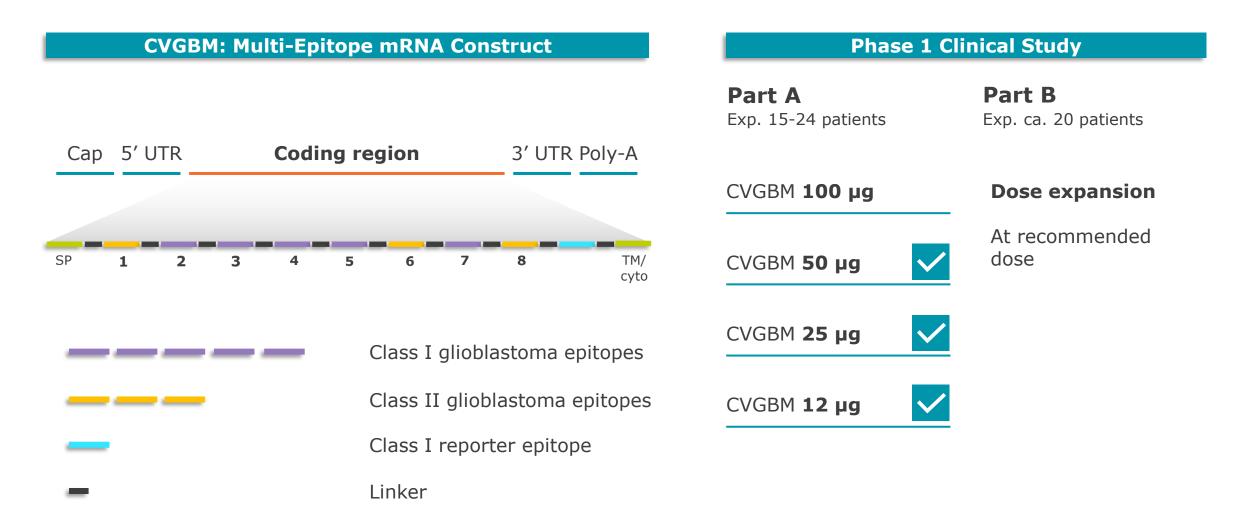
Powerful bioinformatics use the full genetic inventory to identify potentially immunogenic neoantigens as novel **cancer vaccine candidates**

Mapping the Totality of Genomic Changes for Targeted Cancer Vaccination



Exome sequencing offers only **limited insights** into genetic changes of the tumor

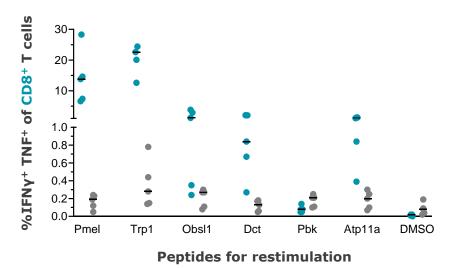
Whole genome sequencing provides full inventory of structural variations and other tumor antigens (such as TAAs, retroviral HERVs etc.)


Oncology: Roadmap Leverages Full Spectrum of Technologies

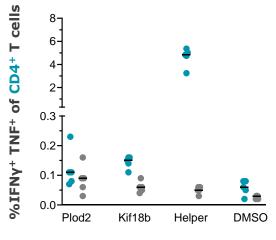
Phase 1 Study in Glioblastoma Leverages Clinically Validated Shared Antigens

In Vivo Validation of CureVac's Multiepitope Cancer Vaccine Design

Ten B16.F10 murine melanoma-derived epitopes


Pmel	Dct ¹⁾	Pbk	Trp1	Obsl1	Plod2	Ints11	Kif18b	Atp11a	Trp53	epitope
1	2	3	4	5	6	7	8	9	10	

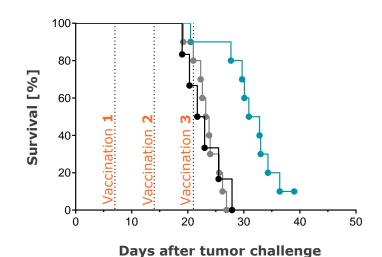
B16.F10 murine tumor model:


- Check-point inhibitor resistant model
- Immune-suppressing microenvironment
- Poorly immunogenic tumors

Immunogenicity in mice across full multiepitope construct²⁾

Day 21: strong CD8+ T cell responses against **five** encoded epitopes

Day 21: strong CD4⁺ T cell response against **two** encoded epitopes



Peptides for restimulation

B16 mRNA construct Control mRNA Untreated

Efficacy in tumor bearing mice²⁾

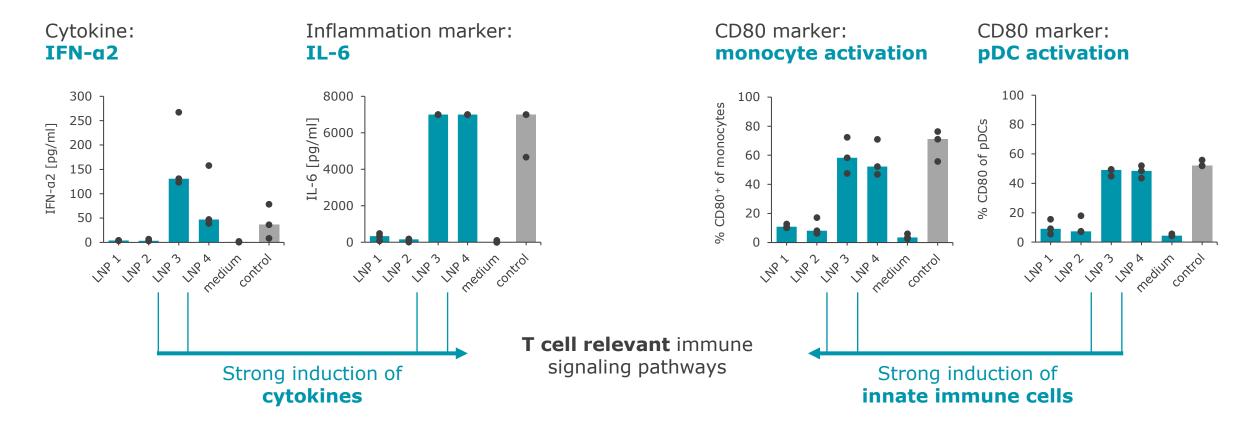
Significantly extended survival from a median of 23.2 days to 30.9 days

LNP: Tailoring Biological Activity for Improved Prophylactic and Cancer Vaccines

Prophylactic Vaccines

- Strong humoral responses, induction of antibodies
- High tolerability, minimize side effects and reactogenicity
- High stability for easy large-scale delivery and long-term storage

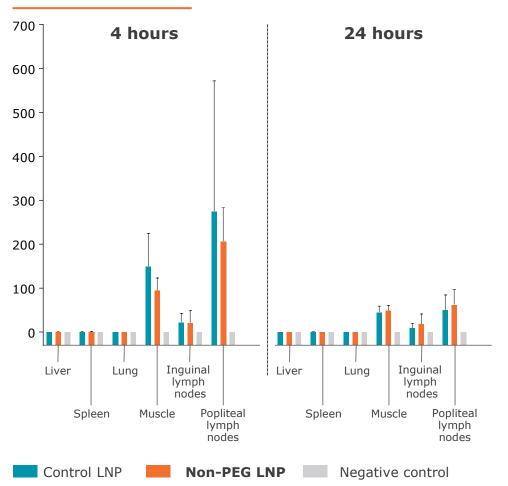
Cancer Vaccines


- Strong cellular responses, induction of tumor-killing T cells
- Strong systemic activation of signaling pathways to maximize immune response
- Maximized mRNA uptake into immune cells for highest efficacy

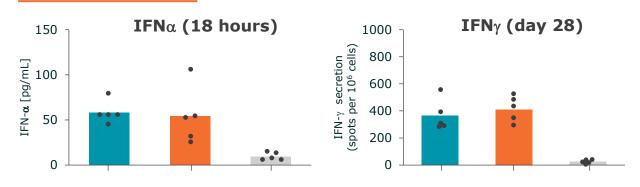
Tailoring Biological Activity for Improved Prophylactic and Cancer Vaccines

Testing LNPs with varying components and concentrations

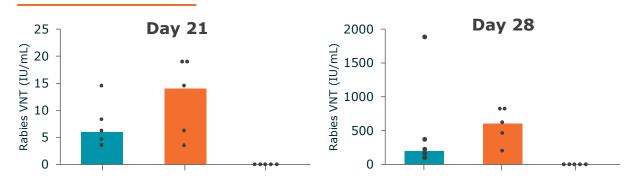
In vitro stimulation of immune signaling activity in human PBMCs



Proprietary Non-PEG LNP: Highly Localized and Immune-Active mRNA Delivery

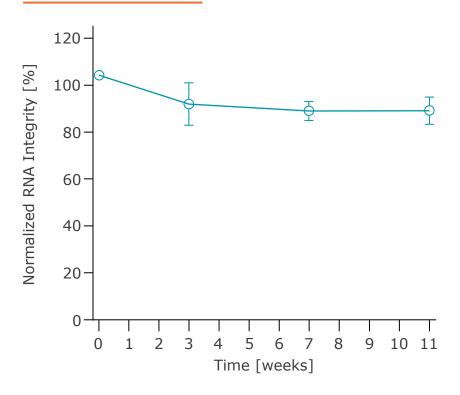

Biodistribution

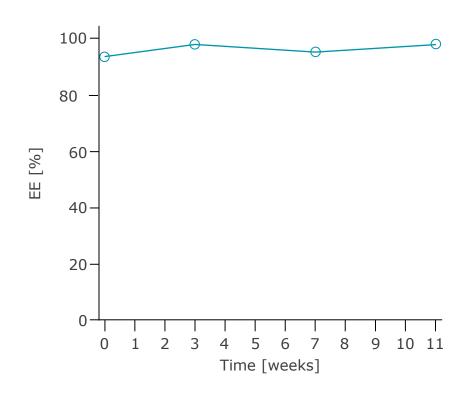
Localization of antigen expression in mice*


Systemic interferon alpha / cellular activity

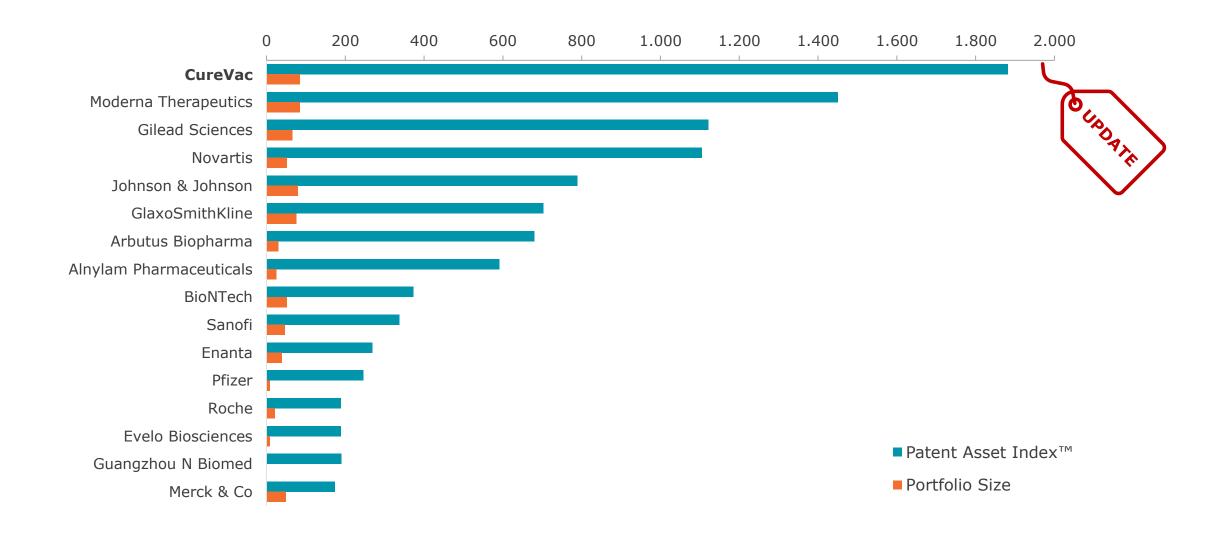
Induction of interferon alpha / interferon gamma in mice*

Humoral activity


Induction of neutralizing antibody titers against rabies in mice*


Proprietary Non-PEG LNP: Exhibiting Good Stability in Dried State at 25°C

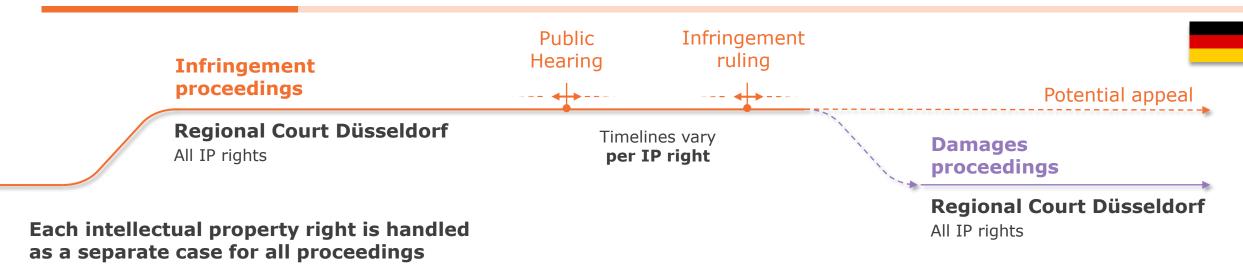
mRNA integrity
HPLC-based assay


LNP integrityEncapsulation efficiency*

Independent Analysis of Strongest Patents in mRNA Vaccines Technology¹⁾

34

Broad Protection of CureVac Innovation in Germany


Intellectual Property Rights - By Type

Intellectual Property Rights - By Patent Family

Patents at issue	Grant date	Expiry date	1. G/C	ED 4 057 488 D4
1. EP 1 857 122 B1	Dec 1, 2010	Jun 5, 2022	Enrichment (Foundational mRNA technology)	EP 1 857 122 B1
2. EP 3 708 668 B1	Jul 27, 2022	Dec 11, 2035		
3. EP 4 023 755 B1	Apr 26, 2023	Dec 11, 2035		
				EP 3 708 668 B1
			2. Split	EP 4 023 755 B1
Utility Models at issue	Grant date	Expiry date	Poly-A Tail (Foundational mRNA technology)	DE 20 2015 009 961 U1 DE 20 2015 009 974 U1
4. DE 20 2015 009 961 U1	Jan 25, 2021	Dec 11, 2025		
5. DE 20 2015 009 974 U1	Feb 17, 2022	Dec 11, 2025		
6. DE 20 2021 003 575 U1	Jan 17, 2022	Feb 3, 2031	3. Coronavirus	DE 20 2021 003 575 U1
6. DE 20 2021 003 575 U17. DE 20 2021 004 123 U1	Jan 17, 2022 Oct 26, 2022	Feb 3, 2031 Feb 3, 2031	3. Coronavirus vaccine (SARS-CoV-2 vaccine design)	DE 20 2021 003 575 U1 DE 20 2021 004 123 U1

Bifurcated German Process to Assess Infringement and Validity Per IP Right

European Patent Office

EP 3 708 **668** B1 EP 4 023 **755** B1

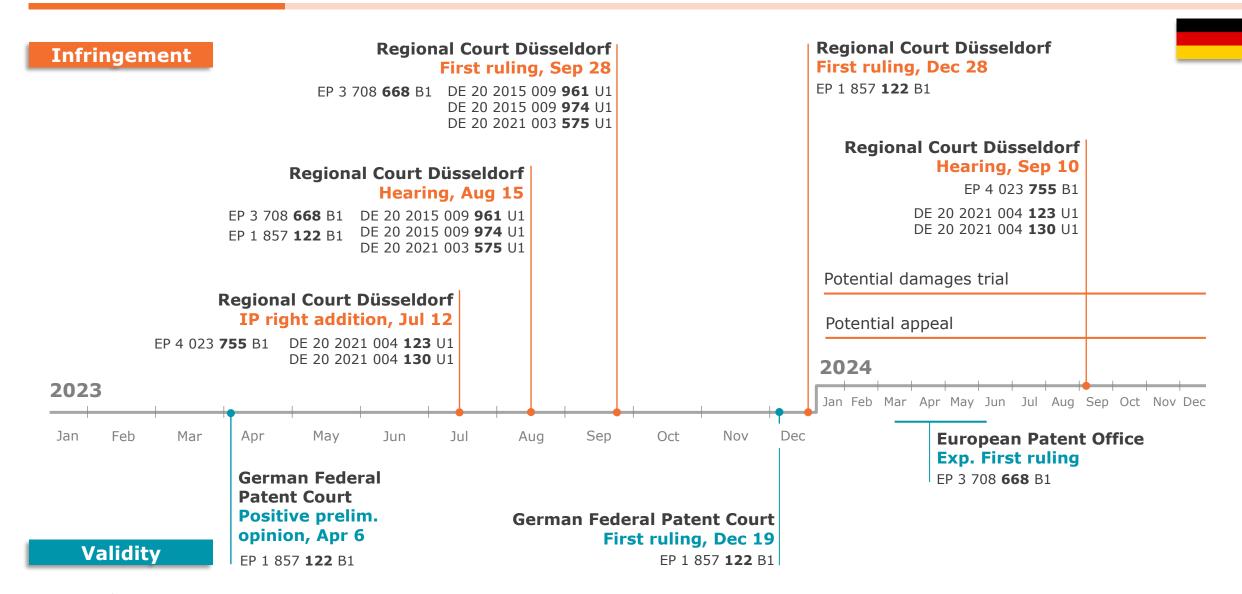
German Federal Patent Court

EP 1 857 **122** B1

German Patent and Trademark Office

DE 20 2015 009 **961** U1 DE 20 2021 004 **123** U1 DE 20 2015 009 **974** U1 DE 20 2021 004 **130** U1

DE 20 2021 003 **575** U1



Potential appeal

Timelines vary per IP right

Defending CureVac's Intellectual Property in Germany

Broad Protection of CureVac Innovation in the U.S.

Intellectual Property Rights

Intellectual Property Rights - By Invention

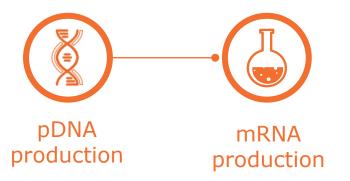
Patents at issue	Grant date	Expiry date	1. G/C	UC 11 12F 242 D2
1. US 11 135 312 B2	Oct 5, 2021	Feb 10, 2026	Enrichment (Foundational mRNA technology)	US 11 135 312 B2
2. US 11 149 278 B2	Oct 19, 2021	Feb 2, 2036		ı
3. US 11 286 492 B2	Mar 29, 2022	Dec 11, 2035	<mark>2.</mark> Split Poly-A Tail	US 11 149 278 B2 US 11 286 492 B2
4. US 11 345 920 B2	May 31, 2022	Dec 11, 2035	(Foundational mRNA technology)	US 11 345 920 B2
5. US 11 241 493 B2	Sep 1, 2020	Jul 10, 2036		
6. US 11 471 525 B2	Feb 8, 2022	Feb 3, 2041	3. Coronavirus	US 11 241 493 B2 US 11 471 525 B2
7 . US 11 576 966 B2	Oct 18, 2022	Feb 3, 2041	Vaccine (SARS-CoV-2 vaccine design)	US 11 576 966 B2 US 11 596 686 B2
8. US 11 596 686 B2	Feb 14, 2023	Feb 3, 2041		
9. US 10 760 070 B2	Mar 7, 2023	Feb 3, 2041	4 Filhustian	US 10 760 070 B2
10. US 11 667 910 B2	Jun 6, 2023	May 30, 2036	4. Filtration (<i>Purification manufacture</i>)	US 11 667 910 B2

Defending CureVac's Intellectual Property in the U.S.

Court Transfer

From Federal District Court of Massachusetts to Eastern District of Virginia, May 16

Highly Flexible Manufacturing Landscape Serving Different Lifecycle Needs


	Research, Technology & Development	Technical Development	Inhouse plants GMP I to III	Inhouse plant GMP IV In the build up	The RNA Printer® In regulatory approval
FLEXIBILITY	mRNA design	Preclinical studies	Clinical studies / early commercial production	Commercial production	Personalized therapy
SCALABILTY 7	Digital sequence	mg-scale / annual output	g to kg-scale / annual output	multi kg-scale / annual output	Individual dosing
SPEED	+++	+++	+	++	++++

The RNA Printer®, Decentralized Mobile mRNA Production

RNA Printer® 2.0*

PANDEMIC PREPAREDNESS

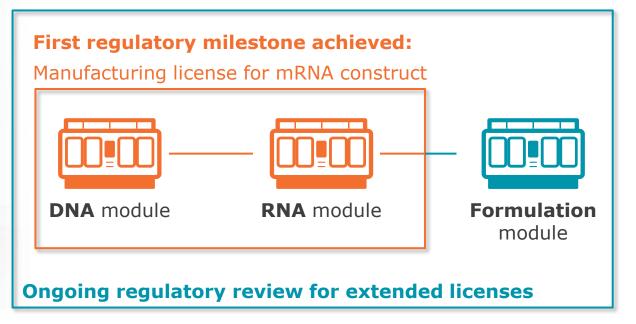
in hospitals in outbreak regions

CUSTOMIZED, POINT OF CARE

mRNA vaccines and therapeutics

CLINICAL DEVELOPMENT

acceleration at lower costs


The RNA Printer® Progressing in Regulatory Review With Initial Milestone

The RNA Printer®

- Highly automated end-to-end system
- Manufacturing of GMP-grade mRNA vaccines and therapeutics
- Closes small-scale manufacturing gap
- Integral part of CureVac's oncology strategy

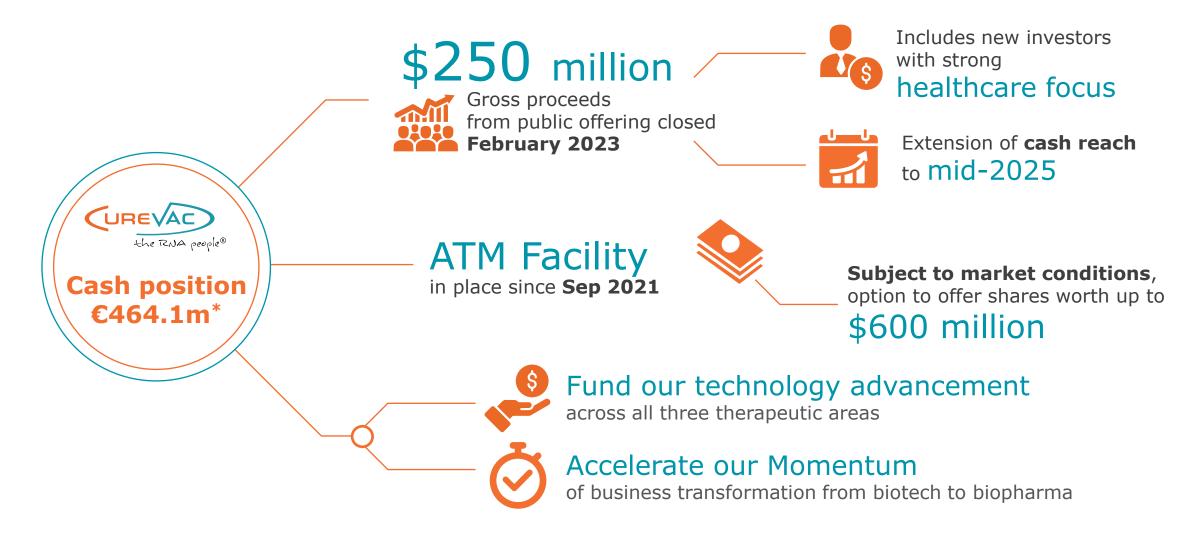
Summary and Highlights

CureVac is advancing its **end-to-end** capabilities from **technology research** to **product development** to scalable **GMP-manufacturing**

Broad and diverse IP portfolio protects strong **competitive positioning** as a central RNA player

Delivering across strategic priorities with clinical lead programs in **COVID-19** and **flu** in **Phase 2** and successfully advancing **Phase 1** study in **glioblastoma**

Going into 2024 expecting **ongoing execution** driven by **key data** from three clinical programs and clinical **Phase 3 developments** in infectious diseases


Strong Q3 cash position of €464.1 million for cash reach until mid-2025 to support execution on programs; accompanied by disciplined focus on **cost management**

CureVac | Investor Presentation, November 2023

Solid Financing Position to Support Corporate Development

Q3 and First Nine Months of 2023 Cash and Condensed Consolidated P&L Data

	December 31, 2022	September 30, 2023
(in € millions)		
Cash and Cash Equivalents	495.8	464.1

	Three months ended	d September 30,	Nine month ended September 30,	
(in € millions)	2022	2023	2022	2023
Revenue	11.2	16.5	55.7	31.2
Cost of Sales, Operating Expenses & Other Operating Income	-63.6	-70.5	-183.6	-217.4
Operating Result	-52.4	-54.0	-127.9	-186.2
Financial Result	4.7	5.3	7.5	12.7
Pre-Tax Loss	-47.7	-48.7	-120.4	-173.5

Q4 and Full-Year 2022 Cash and Condensed Consolidated P&L Data

Twelve months ended December 31

	December 31, 2022	December 31, 2021	
(in € millions)			
Cash and Cash Equivalents	495.8	811.5	

	Tillee months ended	December 31,	I weive months ended December 31,		
(in € millions)	2022	2021	2022	2021	
Revenue	11.7	41.2	67.4	103.0	
Cost of Sales, Operating Expenses & Other Operating Income	-133.2	-46.7	-316.9	-515.3	
Operating Result	-121.5	-5.5	-249.5	-412.3	
Financial Result	-7.2	1.0	0.3	-0.2	
Pre-Tax Loss	-128.7	-4.5	-249.2	-412.5	

Three months ended December 31

Executing on Corporate Growth With an Experienced Team

Pierre Kemula B.Sc. Chief Financial Officer

Myriam Mendila
PhD
Chief Development
Officer

Malte Greune
PhD
Chief Operating
Officer

CureVac Investor Relations Contact

Dr. Sarah Fakih

Vice President Corporate Communications & Investor Relations

Friedrich-Miescher-Str. 15 72076 Tübingen Germany

Phone: +49 (0)7071 9883 -1298 Mobile: +49 (0)160 90496949 Email: sarah.fakih@curevac.com

investors@curevac.com

CVAC | NasdaqListed

CUSIP N2451R105

ISIN NL0015436031

WKN A2P71U

https://www.linkedin.com/company/curevac/ @CureVac

https://twitter.com/CureVacRNA @CureVacRNA

https://de-de.facebook.com/CureVac/ @CureVac

Thank you for your attention

CureVac www.curevac.com