

CureVac Revolutionizing mRNA for Life

Investor Presentation, February 2024

Forward-Looking Statements

The information set forth herein does not purport to be complete or to contain all of the information you may desire. Statements contained herein are made as of the date of this document unless stated otherwise, and neither the delivery of this document at any time, nor any sale of securities, shall under any circumstances create an implication that the information contained herein is correct as of any time after such date or that information will be updated or revised to reflect information that subsequently becomes available or changes occurring after the date hereof.

This presentation of CureVac N.V. (the "company") contains statements that constitute "forward-looking statements" as that term is defined in the United States Private Securities Litigation Reform Act of 1995, including statements that express the company's opinions, expectations, beliefs, plans, objectives, assumptions or projections of the company regarding future events or future results, in contrast with statements that reflect historical facts. Examples include discussion of the potential efficacy of the company's vaccine and treatment candidates and the company's strategies, financing plans, growth opportunities and market growth. In some cases, you can identify such forward-looking statements by terminology such as "anticipate," "intend," "believe," "estimate," "plan," "seek," "project," or "expect," "may," "will," "would," "could," "potential," "intend," or "should," the negative of these terms or similar expressions. Forward-looking statements are based on management's current beliefs and assumptions and on information currently available to the company. However, these forward-looking statements are not a quarantee of the company's performance, and you should not place undue reliance on such statements.

Forward-looking statements are subject to many risks, uncertainties and other variable circumstances, including negative worldwide economic conditions and ongoing instability and volatility in the worldwide financial markets, ability to obtain funding, ability to conduct current and future preclinical studies and clinical trials, the timing, expense and uncertainty of regulatory approval, reliance on third parties and collaboration partners, ability to commercialize products, ability to manufacture any products, possible changes in current and proposed legislation, regulations and governmental policies, pressures from increasing competition and consolidation in the company's industry, the effects of the COVID-19 pandemic on the company's business and results of operations, ability to manage growth, reliance on key personnel, reliance on intellectual property protection, ability to provide for patient safety, and fluctuations of operating results due to the effect of exchange rates or other factors. Such risks and uncertainties may cause the statements to be inaccurate and readers are cautioned not to place undue reliance on such statements. Many of these risks are outside of the company's control and could cause its actual results to differ materially from those it thought would occur. The forward-looking statements included in this presentation are made only as of the date hereof. The company does not undertake, and specifically declines, any obligation to update any such statements or to publicly announce the results of any revisions to any such statements to reflect future events or developments, except as required by law.

For further information, please reference the company's reports and documents filed with the U.S. Securities and Exchange Commission (SEC). You may get these documents by visiting EDGAR on the SEC website at www.sec.gov.

CureVac at a Glance

Pioneers in Medical mRNA Applications

Headquartered in Tübingen

3 GMP

certified suites

large-scale suite in the build-up

Manufacturing Expertise

The RNA Printer®

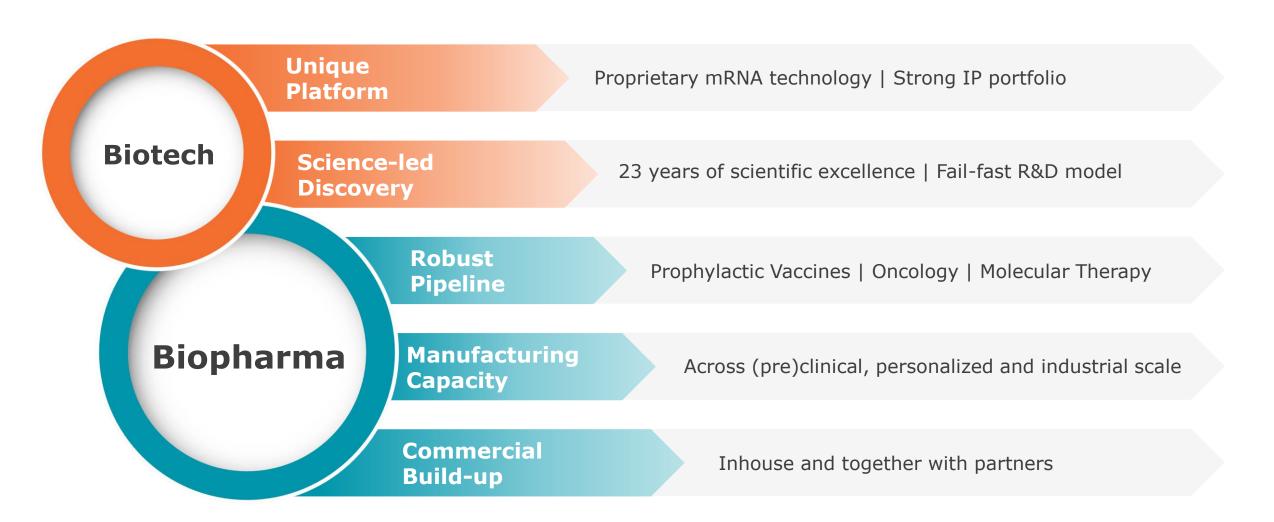
flexible and mobile

Deep clinical pipeline

Financing Business Transformation

€464.1 m
cash position*
=(\$)

Nasdaq Biotech Index


myNEO

Strategic partnerships

- Operational expertise
- Development support
- Commercial execution power

Corporate Growth and Transformation

CureVac | Investor Presentation, February 2024

2023 Selected Highlights

Oncology

Start of **Glioblastoma Phase I** study

Preclinical progress in LNP research

Advancing strategic collaboration with **myNEO Therapeutics**

Selection of **off-the- shelf vaccine** targets

Prophylactic Vaccines

Positive Phase 1
COVID and flu data
(modified mRNA)

Start Phase 2 of combined Phase

1/2 study in flu

Manufacturing

Regulatory approvals for **The RNA Printer**®

Drug substance **manufacturing** license

Drug substance **framework** license

Corporate Progress

New leadership with deep pharma expertise

\$250MM

gross proceeds from public offering

Progress in defending Intellectual Property

H1 2024

H2 2024

Prophylactic Vaccines

Oncology

Molecular Therapy

Manufacturing

Corporate Development

Phase 2 COVID-19: Data readout

Phase 2 Seasonal flu: Data readout

— Phase 3 COVID-19 and flu ongoing discussions with regulators —

Ocular Diseases: Preclinical data

GMP IV: Commercial-scale plant operational

The RNA Printer®: Manufacturing license including formulation (drug product)

IP Germany: European Patent Office Expected ruling on validity EP 3 708 **668** B1

Phase 1 Glioblastoma: Data readout

Seasonal flu/COVID-19 combination:

Initiate clinical development

Pandemic Preparedness Agreement

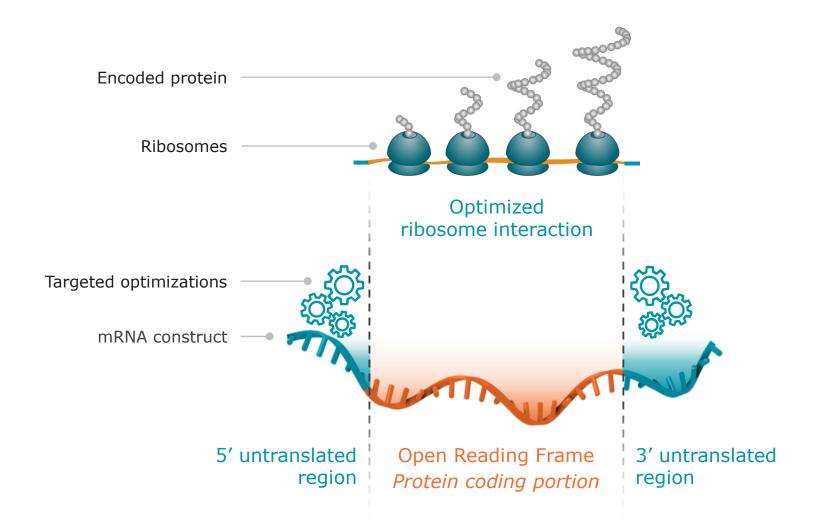
with German Government: Initiation

IP Germany: Regional Court Düsseldorf Ruling on infringement, Sept. 10, 2024 EP 4 023 **755** B1 DE 20 2021 004 **123** U1

DE 20 2021 004 **123** 01 DE 20 2021 004 **130** U1

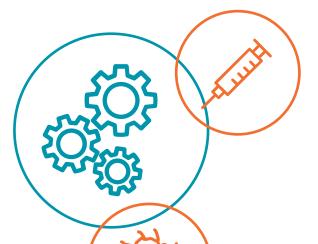
IP U.S.: Eastern district of Virginia Jury trial, start Oct 1, 2024 Validity, infringement, and potential damages All 10 patents at issue

CureVac Pipeline: A Diversified Portfolio



2nd-Generation Influenza COVID-19 Influenza Multivalent construct (modified mRNA) 2nd-Generation Other GSK Four undisclosed targets 1st-Generation Rabies CV7202 Diverse Projects BILL+MELINDA GATES foundation GATES foundation GATES foundation CVGBM (unmodified mRNA) Solid Tumors¹) CV8102 Off-the-Shelf Cancer Vaccines Personalized Cancer Vaccines Antigen discovery engine based on new technologies acquired with Frame Cancer Therapeutics	AREA	PROGRAM			CANDIE	PRECLINICAL	PHASE 1	PHASE	PHASE	
Influenza Multivalent construct (modified mRNA) 2nd-Generation Other GSK Four undisclosed targets 1st-Generation Rabies CV7202 Diverse Projects BILL MELINDA GATES fraudation Rota, malaria, universal influenza Surgically Resected Glioblastoma CVGBM (unmodified mRNA) Solid Tumors¹) CV8102 Off-the-Shelf Cancer Vaccines Multivalent construct (modified mRNA) CV7202 CV7202 CV7202 Antigen discovery engine based on new technologies acquired with	PROPHYLACTIC VACCINES		COVID-19	GSK	CV0601 / CV0701	(modified mRNA)				
2nd-Generation Other GSK Four undisclosed targets 1st-Generation Rabies CV7202 Diverse Projects BILL MELINDA GATES foundation Rota, malaria, universal influenza Surgically Resected Glioblastoma CVGBM (unmodified mRNA) Solid Tumors 1) CV8102 Off-the-Shelf Cancer Vaccines MYNEO Antigen discovery engine based on new technologies acquired with			Influenza		Multivalent construct	(modified mRNA)				
Diverse Projects BILL MELINDA GATES foundation Rota, malaria, universal influenza CVGBM (unmodified mRNA) Solid Tumors¹) CV8102 Off-the-Shelf Cancer Vaccines myneo Antigen discovery engine based on new technologies acquired with			Other	GSK	Four undisclosed targets					
Surgically Resected Glioblastoma CVGBM (unmodified mRNA) Solid Tumors¹) CV8102 Off-the-Shelf Cancer Vaccines myneo on new technologies acquired with		1 st -Generation Rabies			CV7202					
Solid Tumors ¹⁾ CV8102 Off-the-Shelf Cancer Vaccines myneo Therapeutics On new technologies acquired with		Diverse Projects BILL & MELINDA GATES foundation			Rota, malaria, universal i	influenza				
Off-the-Shelf Cancer Vaccines wyneo Antigen discovery engine based on new technologies acquired with	ONCOLOGY	Surgically Resected Glioblastoma			CVGBM	(unmodified mRNA)				
on new technologies acquired with		Solid Tumors ¹⁾			CV8102					
		Off-the-Shelf Cancer Vaccines wyneo								
		Personalized Cancer Vaccines								
Cas9 Gene-Editing CRISPR Therapeutics collaboration	MOLECULAR THERAPY	Cas9 Gene-Editing	g	CRISPR THYRAS-PURIOS	CRISPR Therapeutics coll	laboration)
Liver Diseases REBIRTH-Research Center collaboration		Liver Diseases			REBIRTH-Research Center					
Ocular Diseases Schepens Eye Research Institute collaboration		Ocular Diseases			Schepens Eye Research					
Therapeutic Antibodies Genmab Collaboration		Therapeutic Antib	odies	Genmab	Genmab collaboration					

Optimizing mRNA for Broad Range of Vaccine Applications


- Optimizing untranslated regions based on **potent**, **tissue-specific** regulatory elements
- Optimizations allow for increased translation efficiency and immunogenicity
- Maximizing ribosome interaction for increased protein expression enables low dose activity

Unique Mechanism of Action for Infectious Diseases and Oncology

MECHANISM OF ACTION

- Inducing strong antibody titers
- Inducing B and T cell responses
- Activating innate immune system
- Inducing boostable memory responses

PROPHYLACTIC VACCINES

- Active at **low dose** in humans
- Enables multivalent vaccines
- Fast, large-scale GMP production

CANCER VACCINES & IMMUNO-MODULATION

- Innate and adaptive immune activation
- Key activation of T cell responses
- Demonstrated breaking of tolerance

BROAD INFECTIOUS DISEASES COLLABORATION

JULY 2020

- **Five** defined infectious disease targets
- First disclosed indication: INFLUENZA
- Modified candidate in Phase 2 testing

FINANCIALS

Milestone and royalty payments

COVID-19 COLLABORATION

FEBRUARY 2021

- Broadened technology: modified mRNA
- Advanced formats: mono- and multivalent
- Modified candidates in Phase 2 testing

FINANCIALS

• 50:50 split costs and profit

Advancing Clinical Infectious Disease Development Programs With GSK

Phase 2 Study COVID-19

- CV0701, bivalent candidate encoding the spike protein of BA.4-5 and the original SARS-CoV-2 virus
- Licensed bivalent mRNA comparator vaccine
- Study fully enrolled at 427 participants
- Study conducted in Australia

Phase 2 Part Seasonal Flu

- Candidate selected from comprehensive
 Phase 1 part of combined study
- Licensed age-appropriate comparator vaccines
- Candidate encodes antigens matched to all WHO-recommended flu strains
- Study fully enrolled at 960 participants
- Study conducted in the U.S., Belgium,
 Canada and South Africa
- Data expected in 2024

Advancing Clinical Infectious Disease Development Programs With GSK

Phase 2 Study COVID-19

427 participants aged 18 and older

Bivalent candidate Omicron BA.4-5 and wild type CV0701 high dose

CV0701 medium dose

CV0701 low dose

Licensed bivalent mRNA comparator

Monovalent candidate Omicron BA.4-5

CV0601 medium dose

Phase 2 Part Seasonal Flu

Exp. 480 younger adults aged 18-64

Exp 480 older adults aged 65-85

Candidate dose 1

Candidate dose 1

Candidate dose 2

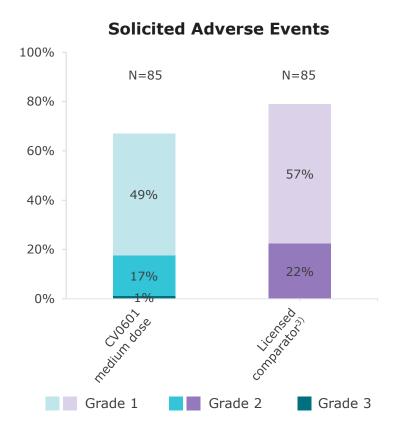
Candidate dose 2

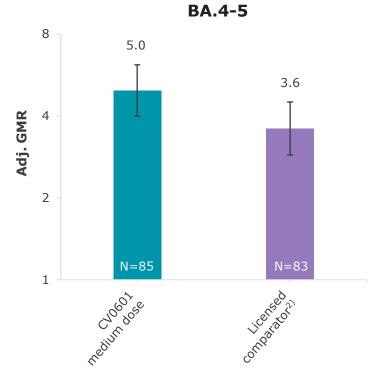
Candidate dose 3

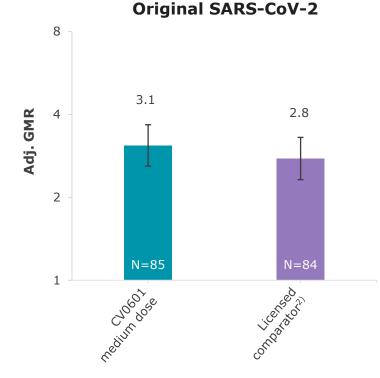
Candidate dose 3

Licensed comparator younger adults

Licensed comparator older adults


COVID-19 Phase 2 Data: CV0601, Monovalent Candidate Encoding Omicron BA.4-5




CV0601: Reactogenicity profile

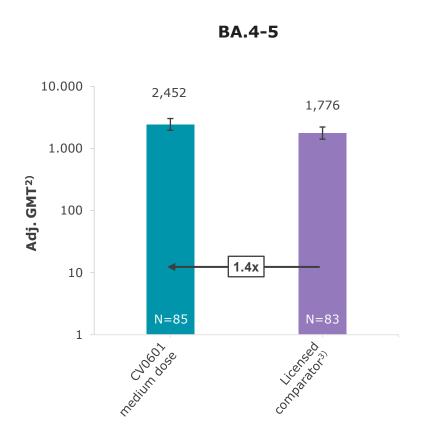
CV0601: Adjusted¹⁾ geometric mean ratios of neutralizing antibodies titers

Day 29 post- to pre-boost titers

CV0601 exhibits favorable tolerability profile and induces robust antibody boosts

GMR: Geometric mean ratio from day 1

- 1) GMR and confidence intervals are adjusted for baseline titer, age at baseline (<65 or ≥65) and prior SARS-CoV-2 infection
- 2) Licensed bivalent, mRNA-based comparator vaccine



COVID-19 Phase 2 Data: CV0601, Monovalent Candidate Encoding Omicron BA.4-5

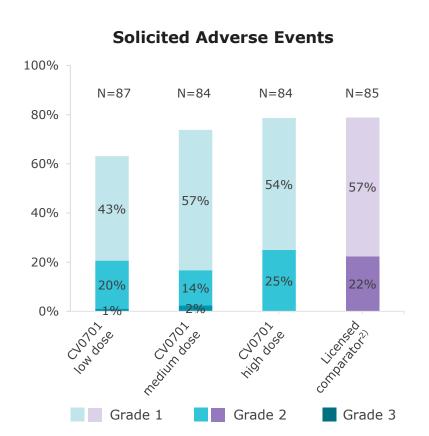
CV0601: Adjusted¹⁾ geometric mean titers of neutralizing antibodies

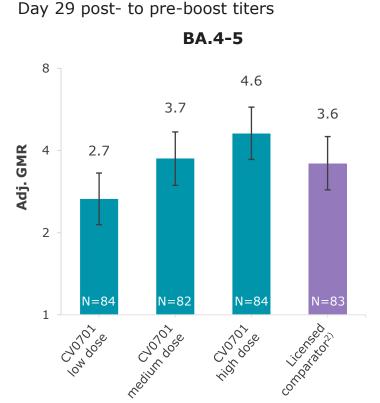
Day 29 post vaccination

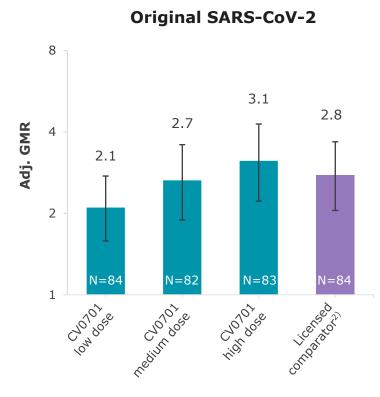
CV0601 elicits robust antibody responses against BA.4-5 as well as the original virus

- GMT and confidence intervals are adjusted for baseline titer, age at baseline (<65 or ≥65) and prior SARS-CoV-2 infection
 All GMT measured via pseudo-typed neutralization assay
- 3) Licensed bivalent, mRNA-based comparator vaccine

16




COVID-19 Phase 2 Data: CV0701, Bivalent Candidate Encoding Omicron BA.4-5 and the Original SARS-CoV-2 Virus



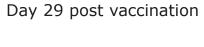
CV0701: Reactogenicity profile

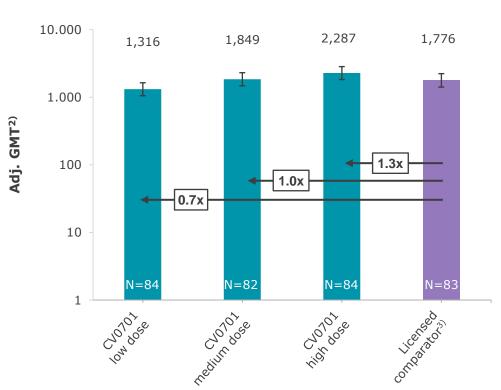
CV0701: Adjusted¹⁾ geometric mean ratios of neutralizing antibodies titers

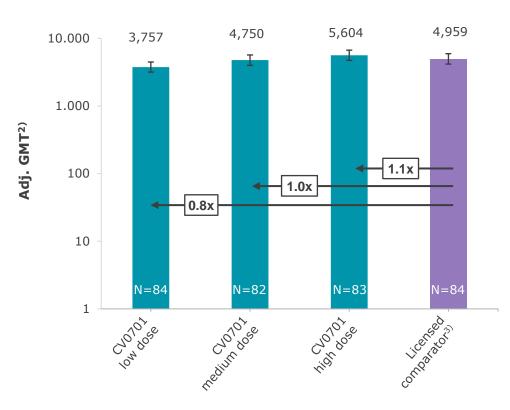
CV0701 is generally well tolerated and shows meaningful immune responses at lower doses

GMR: Geometric mean ratio from day 1

- 1) GMR and confidence intervals are adjusted for baseline titer,
 - age at baseline (<65 or ≥65) and prior SARS-CoV-2 infection Licensed bivalent, mRNA-based comparator vaccine

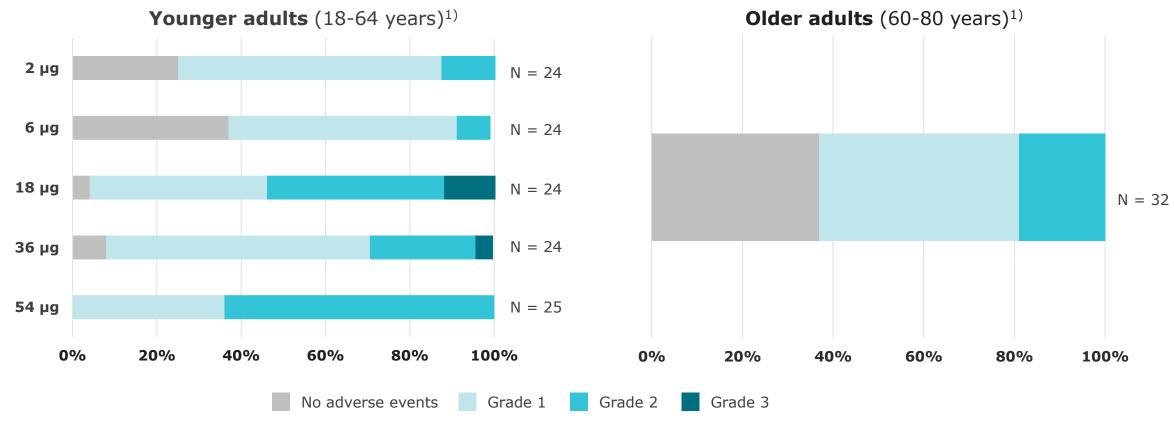



COVID-19 Phase 2 Data: CV0701, Bivalent Candidate Encoding Omicron BA.4-5 and the Original SARS-CoV-2 Virus


CV0701: Adjusted¹⁾ geometric mean titers of neutralizing antibodies

BA.4-5

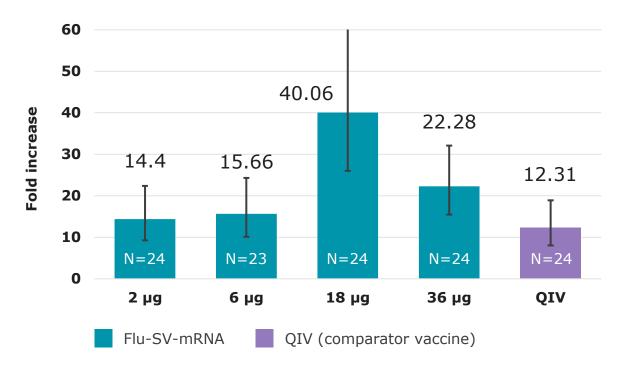
Original SARS-CoV-2


CV0701 antibody titers match or numerically exceed comparator titers starting at medium dose level

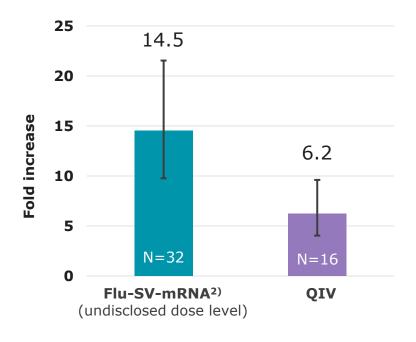
GMT and confidence intervals are adjusted for baseline titer, age at baseline (<65 or ≥65) and prior SARS-CoV-2 infection
 All GMT measured via pseudo-typed neutralization assay

Influenza Phase 1 Data: Reactogenicity Across Tested Doses and Age Groups

Flu-SV-mRNA: monovalent flu construct applying modified mRNA


Modified mRNA offers broad dose range and a tolerable reactogenicity profile

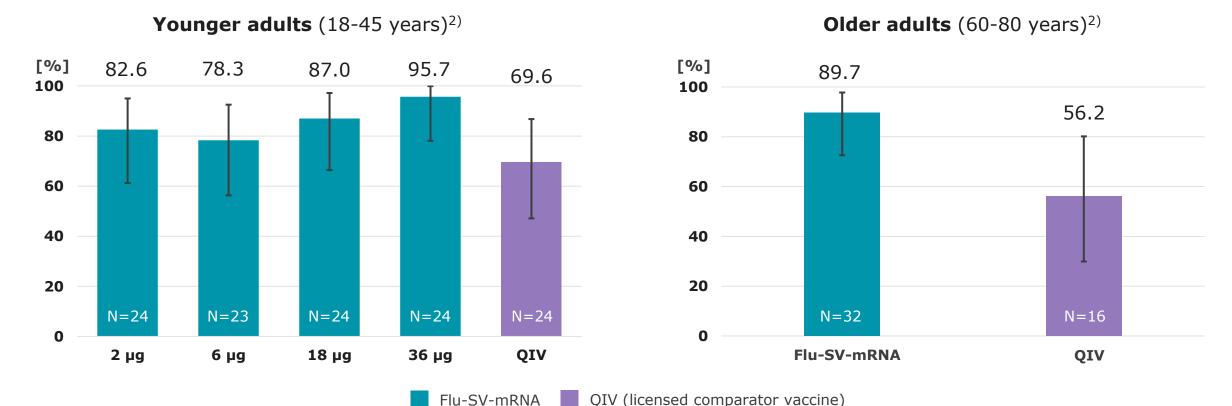
Influenza Phase 1 Data: Flu-SV-mRNA Boosting Activity



Ratio post- to pre-boost titers:

Ratio of serum **HI** geometric mean titers in younger adults (18-45 years)¹⁾

Ratio of serum **HI** geometric mean titers in **older adults** (60-80 years)¹⁾



Antibody increase of Flu-SV-mRNA in line with comparator vaccine already at lowest dose level

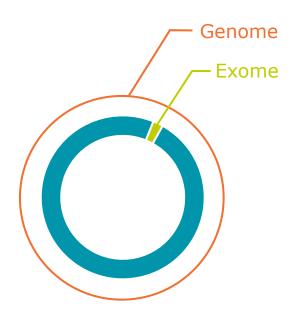
Influenza Phase 1 Data: Flu-SV-mRNA Seroconversion Rates

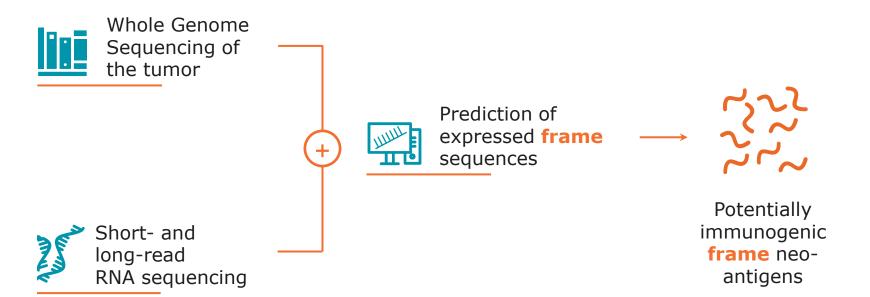
Flu-SV-mRNA: Seroconversion¹⁾ rates

Flu-SV-mRNA in line with licensed comparator vaccine beginning at lowest dose

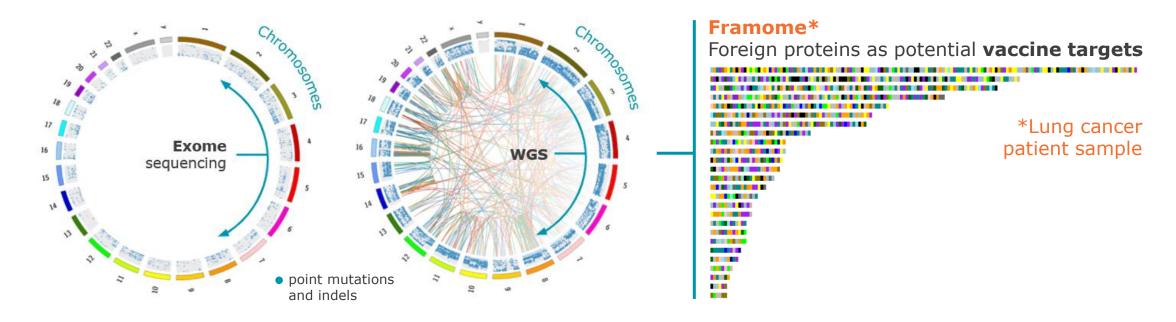
2) Preliminary data prior

to database lock


a) pre-dose HI titer <1:10 and post-dose titer ≥1:40 or


b) pre-dose titer ≥1:10 and post-dose titer at least 4x pre-dose titer

Leveraging Data on the Full Inventory of Genomic Changes


Conventional antigen discovery is restricted to mutations in the **tumor exome**

CureVac leverages the **full tumor genome** and tumor-specific **expression analysis**

Powerful bioinformatics use the full genetic inventory to identify potentially immunogenic neoantigens as novel **cancer vaccine candidates**

Mapping the Totality of Genomic Changes for Targeted Cancer Vaccination

Exome sequencing offers only **limited insights** into genetic changes of the tumor

Whole genome sequencing provides full inventory of structural variations and other tumor antigens (such as TAAs, retroviral HERVs etc.)

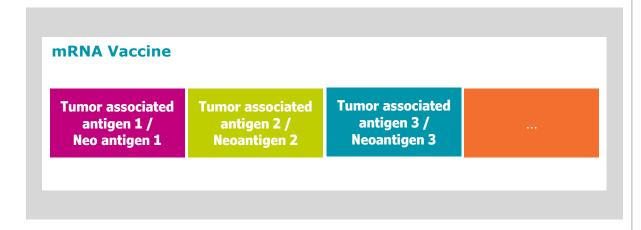
CureVac Platform Strengths will Align to Oncology Opportunities

Off-the-Shelf Cancer Vaccines

Scalable solutions
for indications with high
prevalence of shared
antigens

Personalized Cancer Vaccines

Individualized
vaccines for a broad range
of solid & hematologic
malignancies

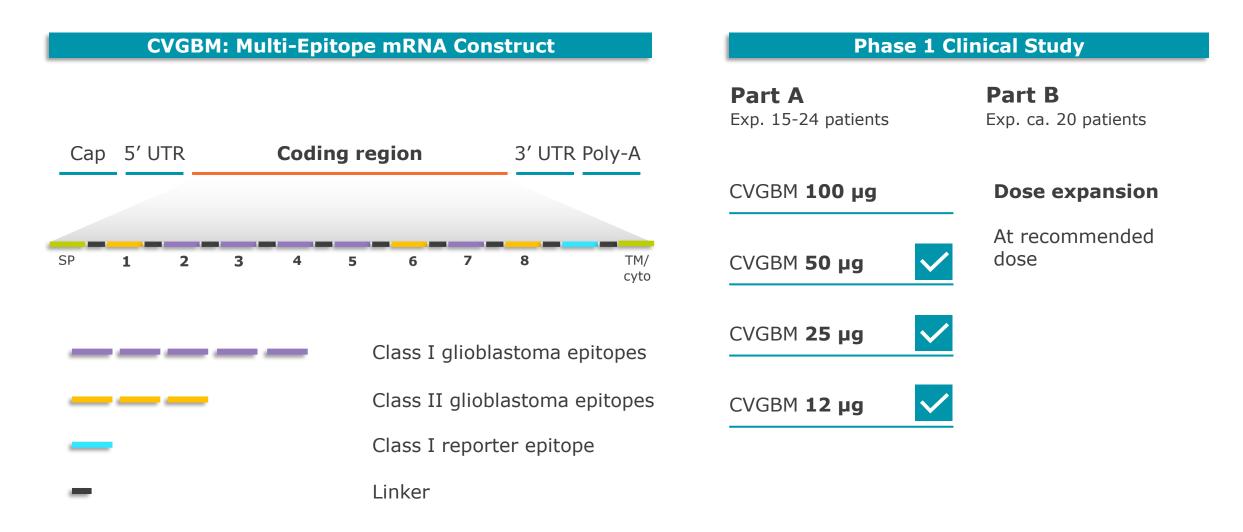

Meeting Different Patient Needs in Oncology

| 26

Off-the-Shelf Cancer Vaccines

mRNA vaccine candidates encoding multiple antigens shared across different cancer indication

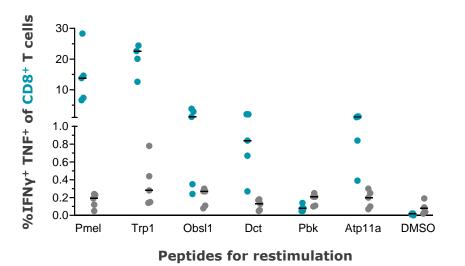
Personalized Cancer Vaccines


Custom-made mRNA vaccine candidates encoding multiple **patient-specific antigens**

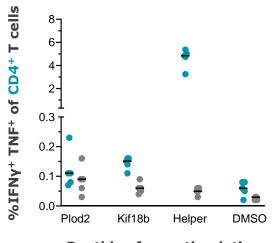
Phase 1 Study in Glioblastoma Leverages Clinically Validated Shared Antigens

Preclinical Validation of CureVac's Multiepitope Cancer Vaccine Design in Mice

Ten B16.F10 murine melanoma-derived epitopes


Pmel	Dct1)	Pbk	Trp1	Obsl1	Plod2	Ints11	Kif18b	Atp11a	Trp53	epitope
1	2	3	4	5	6	7	8	9	10	

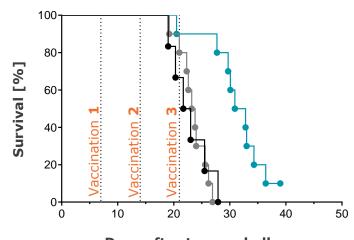
B16.F10 mouse tumor model:


- Check-point inhibitor resistant model
- Immune-suppressing microenvironment
- Poorly immunogenic tumors

Immunogenicity in mice across full multiepitope construct²⁾

Day 21: strong CD8⁺ T cell responses against **five** encoded epitopes

Day 21: strong CD4⁺ T cell response against **two** encoded epitopes



Peptides for restimulation

Efficacy in tumor bearing mice²⁾

Significantly extended survival from a median of 23.2 days to 30.9 days

Days after tumor challenge

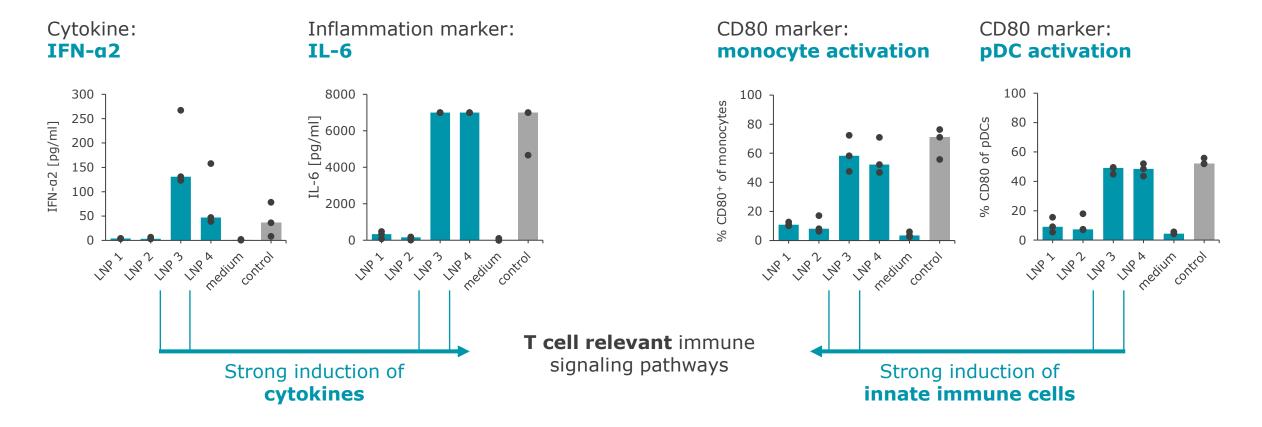
LNP: Tailoring Biological Activity for Improved Prophylactic and Cancer Vaccines

Prophylactic Vaccines

- Strong humoral responses, induction of antibodies
- High tolerability, minimized side effects and reactogenicity
- High stability for easy large-scale delivery and long-term storage

Cancer Vaccines

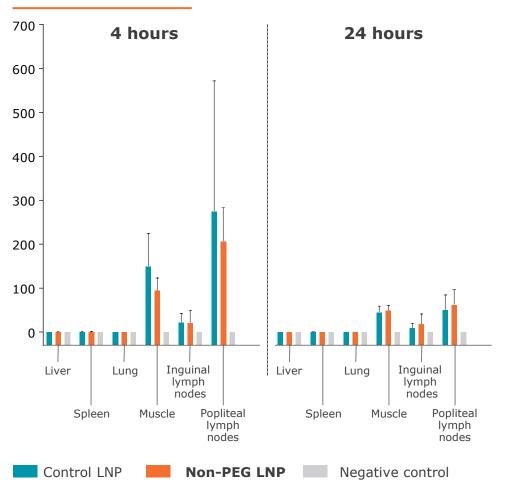
- Strong cellular responses, induction of tumor-killing T cells
- Strong systemic activation of signaling pathways to maximize immune response
- Maximized mRNA uptake into immune cells for highest efficacy


CureVac | Investor Presentation, February 2024

Tailoring Biological Activity for Improved Prophylactic and Cancer Vaccines

Testing LNPs with varying components and concentrations

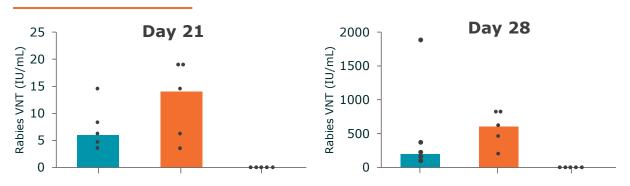
In vitro stimulation of immune signaling activity in human PBMCs



Proprietary Non-PEG LNP: Highly Localized and Immune-Active mRNA Delivery

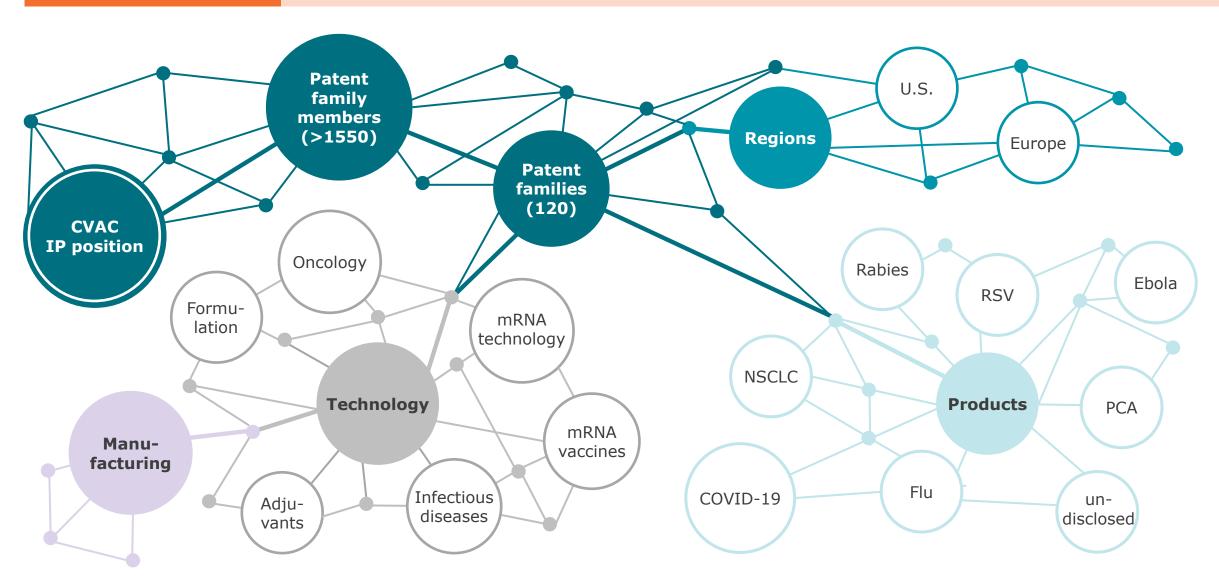
Biodistribution

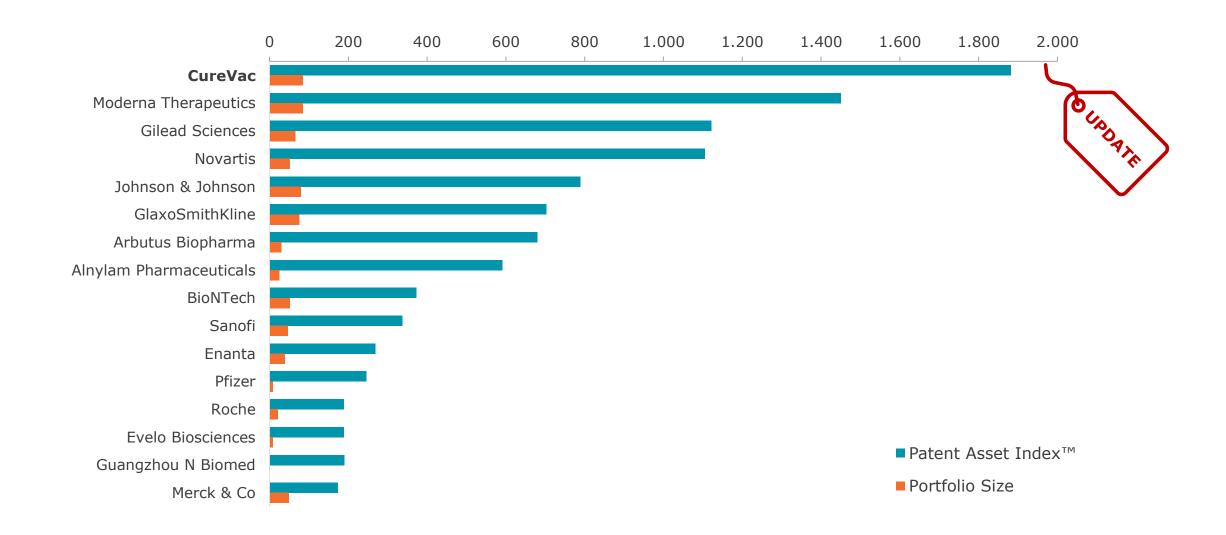
Localization of antigen expression in mice*


Systemic interferon alpha / cellular activity

Induction of interferon alpha / interferon gamma in mice*

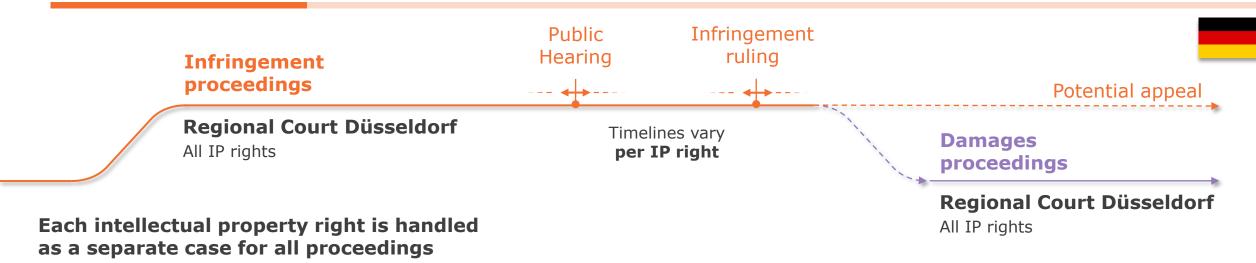
Humoral activity


Induction of neutralizing antibody titers against rabies in mice*


One of the Largest and Most Diverse mRNA Patent Portfolios with >1,000 issued Patents

Independent Analysis of Strongest Patents in mRNA Vaccines Technology¹⁾

Broad Protection of CureVac Innovation in Germany


Intellectual Property Rights - By Type

Intellectual Property Rights - By Patent Family

Patents at issue	Grant date Expiry date		1. G/C					
1. EP 1 857 122 B1	Dec 1, 2010	Jun 5, 2022	Enrichment (Foundational mRNA technology)	EP 1 857 122 B1				
2. EP 3 708 668 B1	Jul 27, 2022	Dec 11, 2035						
3. EP 4 023 755 B1	Apr 26, 2023	Dec 11, 2035						
				EP 3 708 668 B1				
			2. Split	EP 4 023 755 B1				
Utility Models at issue	Grant date	Expiry date	Poly-A Tail (Foundational mRNA technology)	DE 20 2015 009 961 U1 DE 20 2015 009 974 U1				
4. DE 20 2015 009 961 U1	Jan 25, 2021	Dec 11, 2025		DE 20 2013 003 37 4 01				
5. DE 20 2015 009 974 U1	Feb 17, 2022	Dec 11, 2025						
6. DE 20 2021 003 575 U1	Jan 17, 2022	Feb 3, 2031	3. Coronavirus	DE 20 2021 003 575 U1				
7 . DE 20 2021 004 123 U1	Oct 26, 2022	Feb 3, 2031	vaccine	DE 20 2021 004 123 U1				
8. DE 20 2021 004 130 U1	Oct 26, 2022	Feb 3, 2031	(SARS-CoV-2 vaccine design)	DE 20 2021 004 130 U1				

Bifurcated German Process to Assess Infringement and Validity Per IP Right

European Patent Office

EP 3 708 **668** B1 EP 4 023 **755** B1

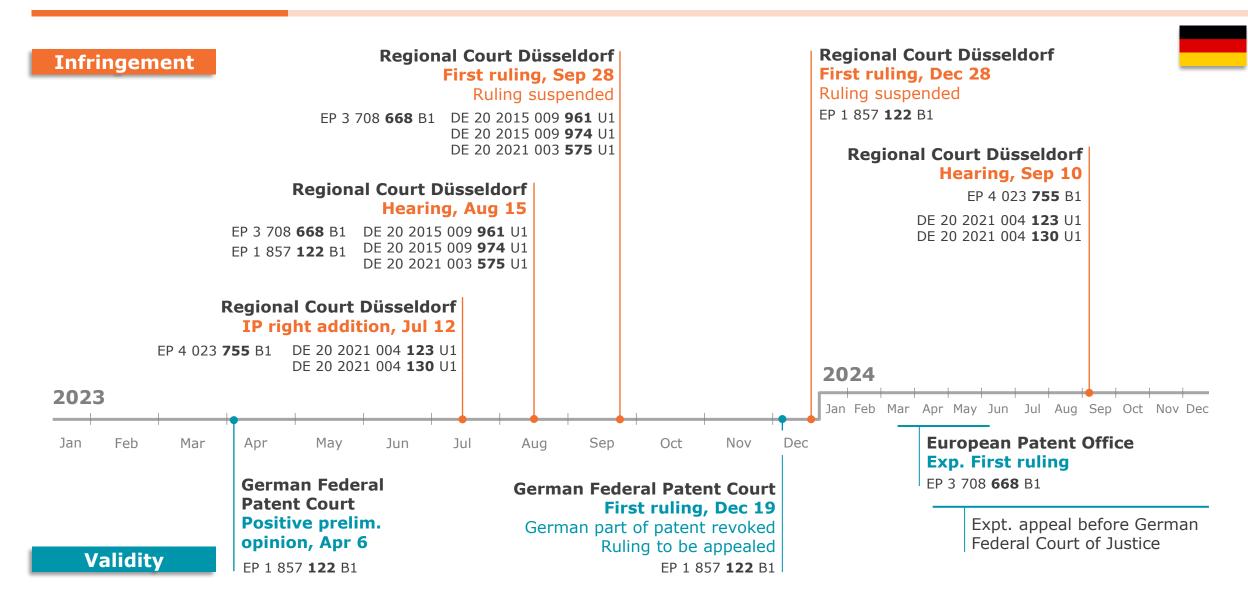
German Federal Patent Court

EP 1 857 **122** B1

German Patent and Trademark Office

DE 20 2015 009 **961** U1 DE 20 2021 004 **123** U1 DE 20 2015 009 **974** U1 DE 20 2021 004 **130** U1

DE 20 2021 003 **575** U1



Potential appeal

Timelines vary per IP right

Defending CureVac's Intellectual Property in Germany

Broad Protection of CureVac Innovation in the U.S.

Intellectual Property Rights

1. G/C Patents at issue **Grant date Expiry date** US 11 135 **312** B2 **Enrichment** 1. US 11 135 **312** B2 Oct 5, 2021 Feb 10, 2026 (Foundational mRNA technology) 2. US 11 149 **278** B2 Feb 2, 2036 Oct 19, 2021 US 11 149 **278** B2 2. Split 3. US 11 286 **492** B2 Mar 29, 2022 Dec 11, 2035 US 11 286 **492** B2 **Poly-A Tail** US 11 345 **920** B2 (Foundational mRNA technology) 4. US 11 345 **920** B2 May 31, 2022 Dec 11, 2035 5. US 11 241 **493** B2 Sep 1, 2020 Jul 10, 2036 US 11 241 **493** B2 6. US 11 471 **525** B2 Feb 8, 2022 Feb 3, 2041 3. Coronavirus US 11 471 **525** B2 **Vaccine** 7. US 11 576 **966** B2 Feb 3, 2041 Oct 18, 2022 US 11 576 **966** B2 (SARS-CoV-2 vaccine design) US 11 596 **686** B2 US 11 596 **686** B2 Feb 14, 2023 Feb 3, 2041 9. US 10 760 **070** B2 Feb 3, 2041 Mar 7, 2023 US 10 760 **070** B2 4. Filtration 10. US 11 667 **910** B2 Jun 6, 2023 May 30, 2036 US 11 667 **910** B2 (Purification manufacture)

Intellectual Property Rights - By Invention

Defending CureVac's Intellectual Property in the U.S.

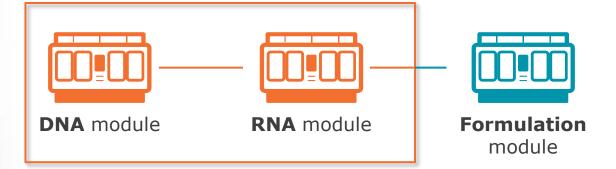
Court Transfer

From Federal District Court of Massachusetts to Eastern District of Virginia, May 16

Highly Flexible Manufacturing Landscape Serving Different Lifecycle Needs

	Research, Technology & Development	Technical Development	Inhouse plants GMP I to III	Inhouse plant GMP IV In the build up	The RNA Printer® In regulatory approval
FLEXIBILITY	mRNA design	Preclinical studies	Clinical studies / early commercial production	Commercial production	Personalized therapy
SCALABILTY	Digital sequence	mg-scale / annual output	g to kg-scale / annual output	multi kg-scale / annual output	Individual dosing
SPEED	+++	+++	+	++	++++

The RNA Printer® Progressing in Regulatory Review With Two Milestones



The RNA Printer®

- Highly automated end-to-end system
- Manufacturing of GMP-grade mRNA vaccines and therapeutics
- Closes small-scale manufacturing gap in oncology

Regulatory milestones achieved:

- Manufacturing license for mRNA construct
- NEW Framework license for mRNA constructs

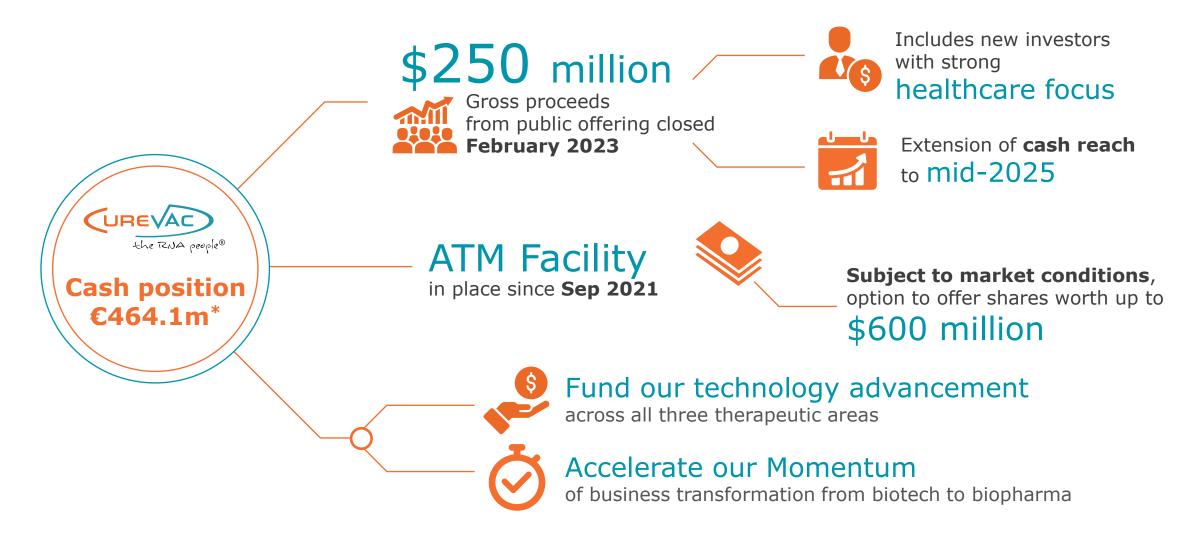
Summary and Highlights

CureVac is advancing its **end-to-end** capabilities from **technology research** to **product development** to scalable **GMP-manufacturing**

Broad and diverse IP portfolio protects strong **competitive positioning** as a central RNA player

Delivering across strategic priorities with clinical lead programs in COVID-19 and flu in Phase 2 and successfully advancing Phase 1 study in glioblastoma

Going into 2024 expecting **ongoing execution** driven by **key data** from three clinical programs and clinical **Phase 3 developments** in infectious diseases


Strong Q3 cash position of €464.1 million for cash reach until mid-2025 to support execution on programs; accompanied by disciplined focus on **cost management**

CureVac | Investor Presentation, February 2024

Solid Financing Position to Support Corporate Development

Q3 and First Nine Months of 2023 Cash and Condensed Consolidated P&L Data

	December 31, 2022	September 30, 2023
(in € millions)		
Cash and Cash Equivalents	495.8	464.1

	Three months ended	September 30,	Nine month ended September 30,	
(in € millions)	2022	2023	2022	2023
Revenue	11.2	16.5	55.7	31.2
Cost of Sales, Operating Expenses & Other Operating Income	-63.6	-70.5	-183.6	-217.4
Operating Result	-52.4	-54.0	-127.9	-186.2
Financial Result	4.7	5.3	7.5	12.7
Pre-Tax Loss	-47.7	-48.7	-120.4	-173.5

Q4 and Full-Year 2022 Cash and Condensed Consolidated P&L Data

	December 31, 2022	December 31, 2021	
(in € millions)			
Cash and Cash Equivalents	495.8	811.5	

	Three months ended December 31,		Twelve months ended December 31,	
(in € millions)	2022	2021	2022	2021
Revenue	11.7	41.2	67.4	103.0
Cost of Sales, Operating Expenses & Other Operating Income	-133.2	-46.7	-316.9	-515.3
Operating Result	-121.5	-5.5	-249.5	-412.3
Financial Result	-7.2	1.0	0.3	-0.2
Pre-Tax Loss	-128.7	-4.5	-249.2	-412.5

Executing on Corporate Growth With an Experienced Team

Pierre Kemula B.Sc. Chief Financial Officer

Myriam Mendila
PhD
Chief Development
Officer

Malte Greune
PhD
Chief Operating
Officer

CureVac Investor Relations Contact

Dr. Sarah Fakih

Vice President Corporate Communications & Investor Relations

Friedrich-Miescher-Str. 15 72076 Tübingen Germany

Phone: +49 (0)7071 9883 -1298 Mobile: +49 (0)160 90496949 Email: sarah.fakih@curevac.com

investors@curevac.com

CVAC | NasdaqListed

CUSIP N2451R105

ISIN NL0015436031

WKN A2P71U

https://www.linkedin.com/company/curevac/ @CureVac

https://twitter.com/CureVacRNA @CureVacRNA

https://de-de.facebook.com/CureVac/ @CureVac

Thank you for your attention

CureVac www.curevac.com