Revolutionizing mRNA for Life

Investor Presentation, April 2021
Forward-Looking Statements

The information set forth herein does not purport to be complete or to contain all of the information you may desire. Statements contained herein are made as of the date of this document unless stated otherwise, and neither the delivery of this document at any time, nor any sale of securities, shall under any circumstances create an implication that the information contained herein is correct as of any time after such date or that information will be updated or revised to reflect information that subsequently becomes available or changes occurring after the date hereof.

This presentation of CureVac N.V. (the “company”) contains statements that constitute “forward-looking statements” as that term is defined in the United States Private Securities Litigation Reform Act of 1995, including statements that express the company’s opinions, expectations, beliefs, plans, objectives, assumptions or projections of the company regarding future events or future results, in contrast with statements that reflect historical facts. Examples include discussion of the potential efficacy of the company’s vaccine and treatment candidates and the company’s strategies, financing plans, growth opportunities and market growth. In some cases, you can identify such forward-looking statements by terminology such as “anticipate,” “intend,” “believe,” “estimate,” “plan,” “seek,” “project,” or “expect,” “may,” “will,” “would,” “could,” “potential,” “intend,” or “should,” the negative of these terms or similar expressions. Forward-looking statements are based on management’s current beliefs and assumptions and on information currently available to the company. However, these forward-looking statements are not a guarantee of the company’s performance, and you should not place undue reliance on such statements. Forward-looking statements are subject to many risks, uncertainties and other variable circumstances, including negative worldwide economic conditions and ongoing instability and volatility in the worldwide financial markets, ability to obtain funding, ability to conduct current and future preclinical studies and clinical trials, the timing, expense and uncertainty of regulatory approval, reliance on third parties and collaboration partners, ability to commercialize products, ability to manufacture any products, possible changes in current and proposed legislation, regulations and governmental policies, pressures from increasing competition and consolidation in the company’s industry, the effects of the COVID-19 pandemic on the company’s business and results of operations, ability to manage growth, reliance on key personnel, reliance on intellectual property protection, ability to provide for patient safety, and fluctuations of operating results due to the effect of exchange rates or other factors. Such risks and uncertainties may cause the statements to be inaccurate and readers are cautioned not to place undue reliance on such statements. Many of these risks are outside of the company’s control and could cause its actual results to differ materially from those it thought would occur. The forward-looking statements included in this presentation are made only as of the date hereof. The company does not undertake, and specifically declines, any obligation to update any such statements or to publicly announce the results of any revisions to any such statements to reflect future events or developments, except as required by law.

For further information, please reference the company’s reports and documents filed with the U.S. Securities and Exchange Commission (SEC). You may get these documents by visiting EDGAR on the SEC website at www.sec.gov.
CureVac at a Glance

PIONEERS IN MEDICAL MRNA APPLICATIONS
- Founded in 2000
- Headquartered in Tübingen
- >500 employees
- Nasdaq listed

UNIQUE MRNA TECHNOLOGY
- Unmodified mRNA
- Balanced immune activation
- Low dose activity

DEEP CLINICAL PIPELINE
- Prophylactic Vaccines
- Immuno-oncology
- Protein Therapies

MANUFACTURING EXPERTISE
- 3 GMP suites online
- 1 large-scale suite in progress
- Broad European CMO network
- Flexible and mobile GMP units

STRATEGIC PARTNERSHIPS
- Development support
- Medical affairs expertise
- Commercial execution power
Key Highlights

Clinical Developments

CVnCoV: COVID-19 vaccine candidate
- Pivotal Phase 2b/3:
 - Fully recruited with over 40,000 participants
 - Amendment submitted to address virus variants
 - Interim analysis for vaccine efficacy exp. Q2 2021
- Phase 2a amendment for vaccine efficacy submitted
- Expanding COVID-19 vaccine program:
 - Three new Phase 3 trials to be initiated shortly
 - Phase 2a expansion for adolescents
- CVnCoV protection demonstrated against South African variant in preclinical challenge study

CV8102: Cancer immuno-modulator in solid tumors
- Phase 1 expansion cohort initiated in advanced melanoma
- Preferred dose of 600µg selected for anticipated Phase 2

COVID-19 Program Partnerships
- Bayer collaboration: 1st generation COVID-19 vaccines
- GSK collaboration: 2nd generation COVID-19 vaccines
- UK Government: variant expertise and scientific input*

CVnCoV Manufacturing
- Adding partners for broad manufacturing network
- Increasing 2022 capacity guidance to up to 1bn
- Reaffirming 2021 capacity guidance of up to 300m

Financial results
- Capital raise: gross proceeds of $517.5 million
- Cash position of €1.32 billion as of Dec 31st, 2020

Subject to ongoing negotiations
Differentiated Technology Creates A New Class of Products

FOCUS AREA

Prophylactic Vaccines
- Induction of antibody responses
- Induction of T-cell responses

Oncology
- Induction of T-cell responses
- Induction of antibody responses
- Breaking of tolerance
- Activation of innate and adaptive immunity

Protein Therapy
- Oncology
 - Use of the liver as a bioreactor
 - Convey controlled immunogenicity
- Rare Diseases
 - Ocular administration
 - Mucosal delivery
 - Other

LEAD PROGRAM / COLLABORATION

- COVID-19 CVnCoV
- Rabies CV7202

- Tumor-associated antigens
- Shared neo-antigens
- CV8102

- Genmab collaboration

- Harvard collaboration
- Yale collaboration
- CRISPR collaboration

FORMLATION

- Lipid nano-particle
- Peptide based
- Polymer based
- Lipid nano-particle
- Lipid nano-particle
CureVac Pipeline: A Diversified Portfolio

<table>
<thead>
<tr>
<th>AREA</th>
<th>PROGRAMS AND INDICATIONS</th>
<th>COLLABORATIONS</th>
<th>PRE-CLINICAL DISCOVERY</th>
<th>PRE-CLINICAL DEVELOPMENT</th>
<th>PHASE 1</th>
<th>PHASE 2</th>
<th>PHASE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROPHYLACTIC VACCINES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disruptive low dose technology</td>
<td>CVnCoV: COVID-19</td>
<td>CEPI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COVID-19 2nd-generation vaccines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CV7202: Rabies</td>
<td>gsk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lassa, Yellow Fever</td>
<td>CEPI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Respirational Syncytial Virus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other Infectious Diseases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diverse projects (Rota, Malaria, Universal Influenza)</td>
<td>BILL & MELINDA GATES foundation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONCOLOGY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaccines and intra-tumoral applications</td>
<td>CV8102: cMEL, ACC, SCC, HNSCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BI13618409 (CV9202): Non-Small Cell Lung Cancer</td>
<td>Boehringer Ingelheim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shared neo-antigen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tumor Associated Antigens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROTEIN THERAPY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rare diseases, gene editing & antibodies</td>
<td>Cas9 Gene-editing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ocular Diseases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lung Respiratory Diseases</td>
<td>Yale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Therapeutic Antibodies</td>
<td>Genmab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Combined Phase 2b/3 clinical trial (2) Funding by CEPI provided for Phase 1 clinical trial, which has completed dosing and recruitment

cMEL: Cutaneous melanoma; ACC: Adenoid cystic carcinoma; SCC: Squamous cell carcinoma; HNSCC: Squamous cell carcinoma of head and neck
Rapidly Expanding the COVID-19 Vaccine Program

COVID-19 Program: CVnCoV

<table>
<thead>
<tr>
<th>TRIAL NO.</th>
<th>CLINICAL STUDY</th>
<th>LOCATION</th>
<th>OBJECTIVE</th>
<th>STUDY SIZE</th>
<th>STATUS</th>
<th>DOSE</th>
<th>EXP. DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>004</td>
<td>Phase 2b/3</td>
<td>Europe, Latin America</td>
<td>Safety and efficacy</td>
<td>>40,000</td>
<td>Fully recruited</td>
<td>12 µg</td>
<td>Q2/2021</td>
</tr>
<tr>
<td>005</td>
<td>Phase 3</td>
<td>Germany (Mainz)</td>
<td>Healthcare population</td>
<td>2,500</td>
<td>>90% recruited</td>
<td>12 µg</td>
<td>Q2/2021</td>
</tr>
<tr>
<td>002</td>
<td>Phase 2a</td>
<td>Peru, Panama</td>
<td>Dose-confirmation</td>
<td>674</td>
<td>Fully recruited</td>
<td>6 µg / 12 µg</td>
<td>Q2/2021</td>
</tr>
<tr>
<td>001</td>
<td>Phase 1</td>
<td>Germany, Belgium</td>
<td>Dose-escalation</td>
<td>280</td>
<td>Fully recruited</td>
<td>2-20 µg</td>
<td>Publication submitted</td>
</tr>
<tr>
<td>002</td>
<td>Phase 2a amendment</td>
<td>Peru</td>
<td>Adolescents (12 to 17)</td>
<td>40 (initial cohort)</td>
<td>Amendment submitted</td>
<td>6 µg / 12 µg</td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>Phase 3</td>
<td>Belgium</td>
<td>Participants with co-morbidities</td>
<td>1,200</td>
<td>Starting shortly</td>
<td>12 µg</td>
<td></td>
</tr>
<tr>
<td>011</td>
<td>Phase 3</td>
<td>Argentina, Colombia, Peru</td>
<td>Co-administration with flu vaccine</td>
<td>1,000</td>
<td>Starting shortly</td>
<td>12 µg</td>
<td></td>
</tr>
<tr>
<td>012</td>
<td>Phase 2</td>
<td>France</td>
<td>Age comparison (18-45 vs. ≥65)</td>
<td>180</td>
<td>Starting shortly</td>
<td>12 µg</td>
<td></td>
</tr>
</tbody>
</table>

UK Government Vaccine Task Force*: CVnCoV variant optimized - Expected start in Q3/2021 -

GSK partnership: 2nd generation COVID-19 vaccine - Expected start in Q3/2021 -

*Subject to ongoing negotiations
Growing talent base: >500 employees
Expanding Management expertise
Strategic partnerships
Strong cash position with €1.32 billion*

EC supply agreement
Manufacturing scaling-up
Accelerated clinical development
Rigorous pre-clinical candidate selection

2020 Year of Corporate Transformation

*As of December 31, 2020
EC: European Commission
Building a commercial organization

Preparing first product launch

Anticipating 2021 revenue generation*

Unique mRNA technology

Strong science expertise

High operational agility

*The forecast is prepared by the Company's management using its best estimate and judgment based on past experience and actual knowledge and progress of the Company's performance as of the date of this presentation, and have been based on several assumptions, many of which are outside the influence of the Company's management. Any deviation of certain of these assumptions could materially change the outcome of the forecast.
Our Core Mandate 2021: Deliver a Safe and Effective COVID-19 Vaccine

Succeeding in the clinic
- Expect to provide first efficacy data in late Q1/early Q2 2021
- Expect to apply for regulatory approval in Q2 2021

Creating capacity
- 3 in-house GMP certified suites
- 4th large-scale suite in progress
- Trans-European CMO network

Delivering the vaccine
- Bayer adding key operational and commercial support
- Cross-border and cross-institution collaborations
CureVac Management

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Franz-Werner Haas</td>
<td>Chief Executive Officer</td>
</tr>
<tr>
<td>Pierre Kemula</td>
<td>Chief Financial Officer</td>
</tr>
<tr>
<td>Mariola Fotin-Mleczek</td>
<td>Chief Technology Officer</td>
</tr>
<tr>
<td>Florian von der Mülbe</td>
<td>Chief Production Officer & Co-Founder</td>
</tr>
<tr>
<td>Igor Splawski</td>
<td>Chief Scientific Officer NEW</td>
</tr>
<tr>
<td>Antony Blanc, PhD</td>
<td>Chief Business/Commercial Officer NEW</td>
</tr>
</tbody>
</table>

CureVac Investor Presentation, April 2021
Strategic Partnerships to Deliver CureVac’s COVID-19 Ambition
Solid Foundation for Sustainable Value Creation

Operational expertise

First-generation COVID-19 vaccines, CVnCoV
Collaboration and Services Agreement

Variants epidemiology, genomics and surveillance
R&D collaboration*

World Class Variant Vaccines Expert Advisory Group

Vaccine development expertise

Second-generation COVID-19 vaccines
Co-Development Partnership

International reach

Execution power

Combination vaccines

Scientific expertise

International reach

BAYER

*Subject to ongoing negotiations
Execution Power Provided by Bayer’s Large-Pharma Infrastructure

Collaboration and Services Agreement
Announced January 7, 2021

Expertise and infrastructure
- Adding operational knowledge, broad international reach and regional access to support global supply of CVnCoV

Support of product development
- Adding muscle in areas such as clinical operations, regulatory affairs, pharmacovigilance, and supply chain performance

Key territory operations
- Adding country support for EU member states, Norway, Iceland, Liechtenstein, UK, Switzerland
- CureVac to be Market Authorization Holder, option for Bayer in other markets outside the EU

Differentiated mRNA technology
COVID-19 lead program, CVnCoV
Manufacturing capacity
World-Leading Vaccine Expertise with GSK for next-generation mRNA COVID-19 vaccines

Co-Development Partnership
Announced July 20, 2020, extended on January 3, 2021

- Vaccine Development Expertise
 Joint development of 2nd generation mRNA vaccines including monovalent and multivalent approaches to address emerging variants in one vaccine
 Joint efforts to address new and future variants to stay one step ahead of the pandemic with resources to research, development and manufacturing
 Focus on developing post-pandemic vaccines

- Commercialization Roles
 GSK to be Marketing Authorization Holder with exclusive rights for development, manufacturing, and commercialization
 CureVac to retain three commercial areas: Germany, Austria, Switzerland
Delivering CVnCoV, the CureVac COVID-19 Vaccine Candidate
Expanding European Manufacturing Network with Experienced Partners

Manufacturing partners

- Wacker
- GlaxoSmithKline
- Bayer
- Rentschler Biopharma
- Novartis
- Celonic
- Fareva

mRNA production

mRNA formulation

Fill & Finish

Packaging

2021
- Up to 300 million doses

2022
- Up to 1 billion doses
The RNA Printer®, Decentralized Mobile mRNA Production

RNA Printer® 2.0

- pDNA production
- mRNA production

PANDEMIC PREPAREDNESS in hospitals in outbreak regions

CUSTOMIZED, POINT OF CARE mRNA vaccines and therapeutics

CLINICAL DEVELOPMENT acceleration at lower costs
Key Agreement with European Commission

Delivering up to 405 million doses of CVnCoV to European member states

- Agreement for 225m doses and an additional 180m dose option
- €450 million upfront payment to mitigate project costs and help to de-risk production before regulatory approval
- Leveraging in-house manufacturing as well as integrated European manufacturing network
Prophylactic Vaccines: COVID-19 Vaccine Candidate, CVnCoV
Unmodified mRNA: Differentiated Mode of Action, Mimics Natural Immunity

- Optimizing untranslated regions based on potent, tissue-specific regulatory elements
- Optimizations allow for increased translation efficiency and immunogenicity
- Maximizing ribosome interaction for increased protein expression enables low dose activity
UNIQUE MECHANISM OF ACTION
- Unmodified, natural mRNA
- Inducing type I interferons
- Inducing B and T cell responses
- Activating innate immune system
- Inducing boostable memory responses

PROPHYLACTIC VACCINES
- Active at low dose in humans
- Enables multivalent vaccines
- Fast, large-scale GMP production
- Multiple product candidates

CANCER VACCINES & IMMUNO-MODULATION
- Innate and adaptive immune activation
- Key activation of T cell responses
- Demonstrated breaking of tolerance
- Multiple product candidates
Clinical Development of COVID-19 Vaccine Candidate, CVnCoV

DOSE ESCALATION TRIAL
- 2-20µg, placebo controlled
- 280 participants, **fully recruited**
 - Expected data update: Q2 2021

DOSE CONFIRMATION TRIAL
- 6µg / 12µg, placebo controlled
- 674 participants, **fully recruited**
 - Expected first data: Q2 2021

SAFETY AND EFFICACY TRIAL
- 12µg, placebo controlled
- ~40,000 participants, **fully recruited**
 - Expected interim data: Q2 2021
Adjusting Late-Stage CVnCoV Trials to the Dynamics of the Virus

PHASE 2b/3
- Fully enrolled
- Over 40,000 participants
- 1:1 randomization

ADDRESSING VARIANTS OF CONCERN
- Secondary endpoint added addressing variants
- Specifying variant-dependent efficacy readout
- Original and UK strain for additional analysis

PHASE 2a
- Fully enrolled
- ~270 participants aged over 60 vaccinated
- 10:1 randomization

UTILIZING HIGH COVID-19 PREVALENCE
- Harness potential of high COVID-19 case numbers
- Include secondary endpoint for efficacy
- Data focus on important group of older adults
CVnCoV: Phase 1 SARS-CoV-2 Specific Antibody Responses

Spike protein binding antibodies

- Induction of anti-bodies across tested dose range
- Immune responses detected at lowest dose of 2µg

Virus neutralizing antibodies

- Antibody titers reach highly medically relevant HCS level at 12µg
 - HCS: Comparator with highest medical relevance
 - All 67 patients exhibited multiple symptoms, 16 hospitalized
 - Antibodies measured at peak times

 GMT: Geometric mean titer; HCS: Human convalescent sera

Preliminary data
Quality of immune response is reflected in antibody ratios, which are similar in CVnCoV-vaccinated subjects and convalescent patients.

<table>
<thead>
<tr>
<th>Antibody Type</th>
<th>Ratio</th>
<th>CVnCoV-vaccinated:</th>
<th>Virus-infected:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPIKE antibodies</td>
<td>1.0</td>
<td>Neutralizing:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Binding:</td>
<td></td>
</tr>
<tr>
<td>RBD antibodies</td>
<td>1.0</td>
<td>Neutralizing:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Binding:</td>
<td></td>
</tr>
</tbody>
</table>
Non-Human Primate Data Suggests CVnCoV Protection Against SARS-CoV-2

Humoral and cellular responses following vaccination with 8µg

- **Strong antibody induction**
 - High titers of Spike (1.6 10^3) and RBD (3.2 10^3) binding antibodies
 - High titer of virus neutralizing antibodies (2.7 10^4 at peak)
- Generation of **multiclonal T cell responses** in line with previous mouse data
- Dose efficiency comparable to 12 µg dose advanced into late-stage human clinical testing

SARS-CoV-2 challenge infection following vaccination with 8µg

UPPER RESPIRATORY TRACT: NOSE AND THROAT
- **Reduced** viral load

LOWER RESPIRATORY TRACT: LUNGS
- **Full lung protection**, no detectable viruses

Full manuscript of pre-clinical data available on bioRxiv pre-print server
Evidence of Protection Against South Africa Strain in Preclinical Study

Variant of Concern
B.1.351 (SA strain)

Original strain
BavPat1

Efficient protection from **challenge with B.1.351** by vaccination with 8μg of CVnCoV

- **Full protection**, no B.1.351 detectable

LOWER RESPIRATORY TRACT: TRACHEA, LUNGS

- **Full protection**, no B.1.351 detectable

UPPER RESPIRATORY TRACT: CONCHAE

- **Residual viral load**
 - no statistical significance

CENTRAL NERVOUS SYSTEM: BRAIN

- **Full protection**, no B.1.351 detectable

Vaccinated animals were protected from **disease and mortality**

Robust induction of antibody titers for BavPat1, **significantly lower** antibody titers for B.1.351

<table>
<thead>
<tr>
<th>Survival non-vaccinated</th>
<th>Survival CVnCoV vaccinated</th>
</tr>
</thead>
<tbody>
<tr>
<td>BavPat1 20%</td>
<td>BavPat1 100%</td>
</tr>
<tr>
<td>B.1.351 0%</td>
<td>B.1.351 100%</td>
</tr>
</tbody>
</table>

Full manuscript of pre-clinical data available on bioRxiv pre-print server
Oncology: Solid Tumor Lead Program, CV8102
UNIQUE MECHANISM OF ACTION
- Unmodified, natural mRNA
- Inducing type I interferons
- Inducing B and T cell responses
- Activating innate immune system
- Inducing boostable memory responses

PROPHYLACTIC VACCINES
- Active at low dose in humans
- Enables multivalent vaccines
- Fast, large-scale GMP production
- Multiple product candidates

CANCER VACCINES & INTRA-TUMORAL IMMUNOMODULATION
- Innate and adaptive immune activation
- Key activation of T cell responses
- Demonstrated breaking of tolerance
- Multiple product candidates
CV8102: From Local Immune Activation to Systemic Immune Responses

CV8102 targets immune receptors TLR 7, TLR8 and RIG-I

TREATED TUMOR LESION
- Induction of cytokines, chemokines
- Antigen release and presentation
- Activation of innate immune cells
- NK and T-cell activation
- Tumor growth inhibition

DRAINING LYMPH NODE
- Activation of immune cells
- Antigen presentation, T cell priming
- NK, T- and B-cell activation

DISTAL TUMORS
- Tumor growth inhibition
- Amplification of immune response

NK cells: Natural killer cells
Preliminary data on overall tumor response and duration (data cut-off October 5, 2020)

Preliminary efficacy:

- **Combination with PD-1 antibodies**
 - 1 Complete Response (cMEL)
 - 2 Partial Responses (cMEL, cSCC)
 - 3 Stable Diseases with shrinkage of injected and/or non-injected lesions* (HNSCC, Melanoma, cSCC)

- **Single agent**
 - 55% pts anti-PD-1 pre-treated
 - 7% with anti-CTLA4
 - 86% pts anti-PD-1 pre-treated
 - 48% pts with anti-CTLA4

*Patients more heavily pre-treated than patients in single agent cohort

cMEL: Cutaneous melanoma; ACC: Adenoidcystic carcinoma; SCC: Squamous cell carcinoma; HNSCC: Squamous cell carcinoma of head and neck
CV8102: Monotherapy Case Studies

Case study 1
150 µg Complete Response (CR)

<table>
<thead>
<tr>
<th>Lesion pre-treatment</th>
<th>5 injections CV8102</th>
<th>8 injections CV8102</th>
</tr>
</thead>
</table>

74-year-old female patient, stage IIIc melanoma with multifocal in-transit metastases
- CR of injected and non-injected cutaneous lesions
- CR of subcutaneous lesion (MRI)
- Marked transient rise in serum IL-6 and CRP following the first intra-tumoral injection
- Partial regression of injected tumor lesion after 5 injections
- CR of in-transit metastases on MRI, CR of all skin metastases at week 12
- Patient continued to receive injections at monthly intervals for 9 months without recurrence

Case study 2
100 µg CV8102 (SD)

<table>
<thead>
<tr>
<th>Metastatic LN pre-treatment</th>
<th>6 injections CV8102</th>
<th>13 injections CV8102</th>
</tr>
</thead>
</table>

91-year-old male patient, stage IV HNSCC with large buccal and small lip lesion and a contralateral cervical metastatic LN, pretreated with cetuximab, external beam radiation and multiple surgeries
- Buccal and lip lesions remained stable for 9 months (study duration)
- Untreated metastatic LN showed ongoing regression
- Overall stable disease according to RECIST 1.1 for 9 months
- Early increase in IL-6

Case study 3
450 µg CV8102 (PR)

<table>
<thead>
<tr>
<th>Pre-treatment</th>
<th>after 8 CV8102 injections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noninjected pleural lesion</td>
<td></td>
</tr>
</tbody>
</table>

50-year-old female patient, patient with anti-PD-1 refractory melanoma, stage IV N3c M1b at study entry, early progression on adjuvant Nivolumab treatment
- After 8 IT injections of CV8102
 - PR per RECIST 1.1 with shrinkage of injected and several non-injected lesions

Early drop in serum LDH

-20 -10 0 10 20 30 40 50 60 70 80

LDH [U/L]

Trial day

Early drop in serum LDH

LN: Lymph node
2020 Financial Highlights
Our Financial Strength Enables the Company Transformation

Nasdaq listing: ~€193 million

Cumulative Investments €110 million

Private Round: ~€560 million

GSK €150 million

GSK Upfront €120 million

KfW €300 million

Cash position ~€1.32bn*

€252 million
Grant of the German Federal Ministry of Education and Research

€120 million
GSK Upfront Payments

€50 million
1st tranche drawn of the European Investment Bank (EIB)

NEW: ~$517.5m
Aggregated gross proceeds from public offering closed February 2021

Two mid-nine figure upfront Payments European Commission

*As of December 31, 2020
Capital Inflow Fuels Corporate Transformation

<table>
<thead>
<tr>
<th>2019</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>€30,7m</td>
<td>€1.32bn</td>
</tr>
<tr>
<td>Collaboration & upfront payments</td>
<td>€579m</td>
</tr>
<tr>
<td>Grants</td>
<td>€120m</td>
</tr>
<tr>
<td>Finance rounds & equity</td>
<td>€874m</td>
</tr>
<tr>
<td>Loan</td>
<td>€50m</td>
</tr>
<tr>
<td>Personnel expenses</td>
<td>€35m</td>
</tr>
<tr>
<td>3rd Party related cash-out</td>
<td>€200m</td>
</tr>
<tr>
<td>Other</td>
<td>€4m</td>
</tr>
</tbody>
</table>

Full-year 2019 vs Full-year 2020:

- **Increase:** +4,210%
Cash and Condensed Consolidated P&L Statement

Year ended December 31,

<table>
<thead>
<tr>
<th></th>
<th>2020 (in € millions)</th>
<th>2019 (in € millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash and Cash Equivalents</td>
<td>1,322.6</td>
<td>30.7</td>
</tr>
</tbody>
</table>

Year ended December 31, Three Month ended December 31,

<table>
<thead>
<tr>
<th></th>
<th>2020 (in € millions)</th>
<th>2019 (in € millions)</th>
<th>2020 (in € millions)</th>
<th>2019 (in € millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue</td>
<td>48.9</td>
<td>17.4</td>
<td>6.0</td>
<td>6.8</td>
</tr>
<tr>
<td>Operating Expenses</td>
<td>-158.7</td>
<td>-116.9</td>
<td>-52.6</td>
<td>-41.9</td>
</tr>
<tr>
<td>Operating Result</td>
<td>-109.8</td>
<td>-99.5</td>
<td>-46.6</td>
<td>-35.1</td>
</tr>
<tr>
<td>Financial Result</td>
<td>-20.0</td>
<td>-0.6</td>
<td>-10.7</td>
<td>-0.8</td>
</tr>
<tr>
<td>Earnings before Taxes (EBT)</td>
<td>-129.8</td>
<td>-100.1</td>
<td>-57.3</td>
<td>-35.9</td>
</tr>
</tbody>
</table>
Key Takeaways

On track to finalize late stage clinical CVnCoV development

Poised to bring CVnCoV to market in H1 2021

Broaden operational infrastructure along CVnCoV momentum

Focused pipeline strategy in our three key areas

Grow the talent base for transformation from biotech to biopharma
Appendix
CVnCoV Phase 1 Trial Design

- Partially blinded, placebo-controlled, dose-escalation study in healthy adults (18-60 years)
- Clinical sites in Germany and Belgium
- Intra-muscular vaccinations on day 1 and 29
- Data Safety Monitoring Board (DSMB) approval of tolerability and dose escalation

<table>
<thead>
<tr>
<th>Dose (µg)</th>
<th>Seronegative</th>
<th>Seropositive</th>
<th>Fully recruited</th>
</tr>
</thead>
<tbody>
<tr>
<td>12µg</td>
<td>12µg</td>
<td>Sentinel group (11)</td>
<td>24</td>
</tr>
<tr>
<td>8µg</td>
<td>8µg</td>
<td>Full cohort</td>
<td>46</td>
</tr>
<tr>
<td>6µg</td>
<td>6µg</td>
<td>/</td>
<td>46</td>
</tr>
<tr>
<td>4µg</td>
<td>4µg</td>
<td>/</td>
<td>46</td>
</tr>
<tr>
<td>2µg</td>
<td>2µg</td>
<td>Full cohort</td>
<td>46</td>
</tr>
</tbody>
</table>

Day 1: Prime vaccination
Day 29: Boost vaccination
Reported here: Day 36 & 43
Total: 220
Total: 41

CureVac Investor Presentation, April 2021 | 40
No serious adverse events or dose limitations were observed.
All symptoms were transient and resolved rapidly within 24 to 48 hours.
Analysis of SARS-CoV-2 Specific Antibody Responses

Binding antibodies:
- Measured by ELISA
- Spike protein (S1+S2)
- Receptor Binding Domaine (RBD)

Virus neutralizing antibodies:
- Measured by micro-neutralization assay
- Live human SARS-CoV-2 virus
- Positive titers by 50% of neutralization

Human Convalescent Sera (HCS) panel:
- Comparator with highest medical relevance
- 51 patients with multiple symptoms, 16 hospitalized
- Antibodies measured at the peak time
CVnCoV Phase 1 Spike Binding Antibodies: Show dose-dependent induction

- Dose-dependent induction of binding antibodies across tested dose range
- Immune response detected at lowest dose of 2µg
- Binding antibody titers reach highly medically relevant HCS level at 12µg

GMT: Geometric mean titer; HCS: Human convalescent sera
CVnCoV Phase 1 Neutralizing Antibodies: Reach highest relevant HCS level

- Titers remain stable after reaching peak level
- Immune response already at lowest dose of 2µg detected
- Neutralizing antibody titers reach highly medically relevant HCS level at 12µg
Unique Mechanism of Action Mediated by Interferon Type 1

In animal models... and in humans

Rat model
Day 1 after 1 dose

Dose dependent induction of IFN-α in rats

Mouse model
Day 15 after 2nd dose

Induction of IFN-α (all subjects)

Day 0 1 2 8 29 30 1 2 8 29 30 36

2µg

8µg

CureVac Investor Presentation, April 2021

In animal models...

Induction of SARS-CoV-2 specific CD8⁺ T cells

Induction of SARS-CoV-2 specific CD4⁺ T cells

CureVac Investor Presentation, April 2021

Auto-antibodies against type I IFNs in patients with life-threatening COVID-19

Cite as: P. Bastard et al., Science 10.1126/science.abd4585 (2020).
Long-lasting booster effect of neutralizing SARS-CoV-2 antibodies induced with 2µg CVnCoV in seropositive subjects

- CVnCoV vaccine was well tolerated in seropositive subjects
- All seropositive subjects benefited from the vaccination
- Stable antibody titers imply induction of immune memory for long-term protection